Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề: l = d2 - d1 = √Δ
Ta có:
∗ Vậy muốn tìm tiêu cự của thấu kính ta dùng thí nghiệm để tìm được hai vị trí của thấu kính cho ảnh rõ trên màn. Sau đó:
- Đo khoảng cách vật – màn bằng a.
- Đo khoảng cách l giữa hai vị trí của thấu kính cho ảnh rõ nét trên màn.
- Áp dụng công thức:
Sơ đồ tạo ảnh:
Khoảng cách giữa vật và ảnh qua thấu kính L = |d + d'|
Vì vật thật, ảnh thật nên L = d + d'
Theo giả thiết có hai vị trí cho ảnh rõ nét trên màn. Gọi hai vị trí vật và ảnh tương ứng là
a) Chứng minh:
\(d+d' =a \Rightarrow d' = a -d\)
Và \(f=\frac{d.d'}{d+d'} \Rightarrow d = \frac{d.(a-d)}{a}\)
\( \Rightarrow d^2 -ad + af =0\)
\( \Delta = a^2 -4af =a(a-4f)\)
(Điều kiện để phương trình có nghiệm là \(a \geq 4f \))
Vì đã có 1 ảnh rõ nét rồi nên phương trình sẽ có nghiệm, vì có vị trí thứ 2 nữa nên phương trình phải có 2 nghiệm phân biệt.
Ta có hai vị trí này là 2 nghiệm có phương trình:
\( d_1 = \frac{a+ \sqrt{\Delta}}{2}\)
\(d_2 = \frac{a- \sqrt{\Delta}}{2}\)
b) Gọi l =khoảng cách 2 vị trí trên ta có:
\( l = d_2 -d_1 = \frac{a+ \sqrt { \Delta} - (a- \sqrt { \Delta})}{2} = \sqrt{\Delta} \)
Ta có: \(l^2 = \Delta = a^2 -4af \Rightarrow f = \frac{a^2 -l^2 }{4a}\)
Để đo tiêu cự chỉ cần đo khoảng cách giữa 2 vị trị cho ảnh rõ nét trên màn và khoảng cách giữa vật- màn. Phương pháp này gọi là phương pháp Bessel. Hoặc có thể dùng bất đẳng thức Cauchy để chứng minh cũng được nhé!
Sơ đồ tạo ảnh
AB → A’B’
d d’
Công thức thấu kính:
Gọi khoảng cách từ vật tới ảnh là L ⇒ |d’ + d| = L.
Vật thật ⇒ d > 0
L = 125cm
∗ Trường hợp 1: A’B’ là ảnh thật → d’ > 0
→ L = d’ + d =125cm (2)
Từ (1) và (2) ta có:
Giải phương trình lấy nghiệm d1 > 0 ta được: d1 = 17,54 cm
∗ Trường hợp 2
d’ + d = - 125cm (trường hợp này thì ảnh A’B’ là ảnh ảo) (3)
Từ (1) và (3) ta có:
Giải phương trình lấy nghiệm d > 0 ta được: d = 25cm hoặc d = 100cm
Vì F và F' đối xứng với nhau qua quang tâm O
\(\Rightarrow FF'=2OF=2OF'=2.30=60\left(cm\right)\)
Vậy khoảng cách giữa 2 tiêu điểm là 60cm