K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

Dễ ợt

Đồ ngu

28 tháng 3 2017

hứ như vậy mà cũng đòi hỏi đó hả

Gọi vận tốc dự định của người đi xe đạp là x(km/h)

(Điều kiện: x>0)

Thời gian dự kiến sẽ đi hết quãng đường là \(\dfrac{20}{x}\left(h\right)\)

Vận tốc sau khi giảm đi 2km/h là:

x-2(km/h)

Sau 1h thì xe đạp đi được: 1*x=x(km)

Độ dài quãng đường còn lại là 20-x(km)

Thời gian thực tế đi hết quãng đường là:

\(1+\dfrac{20-x}{x-2}\left(h\right)\)

Vì người đó đi chậm hơn dự định 30p=0,5h nên ta có:

\(1+\dfrac{20-x}{x-2}-\dfrac{20}{x}=0,5\)

=>\(\dfrac{20-x}{x-2}-\dfrac{20}{x}=\dfrac{-1}{2}\)

=>\(\dfrac{x\left(20-x\right)-20\left(x-2\right)}{x\left(x-2\right)}=\dfrac{-1}{2}\)

=>\(\dfrac{20x-x^2-20x+40}{x\left(x-2\right)}=\dfrac{-1}{2}\)

=>\(\dfrac{x^2-40}{x\left(x-2\right)}=\dfrac{1}{2}\)

=>\(2\left(x^2-40\right)=x\left(x-2\right)\)

=>\(2x^2-80-x^2+2x=0\)

=>\(x^2+2x-80=0\)

=>\(\left(x+10\right)\left(x-8\right)=0\)

=>\(\left[{}\begin{matrix}x+10=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-10\left(loại\right)\\x=8\left(nhận\right)\end{matrix}\right.\)

Vậy: vận tốc dự định là 8km/h

21 tháng 5 2016

Gọi vận tốc của xe lúc đầu là x (km/h) , chiều dài quãng đường AB là y (km) (x>10,y>0) 

Theo đề bài : 

21 tháng 5 2016

Xin lỗi mình còn thiếu:

Hệ hương trình : \(\hept{\begin{cases}\frac{y}{x+10}=\frac{y}{x}-3\\\frac{y}{x-10}=\frac{y}{x}+5\end{cases}}\)

Giải ra được : x = 40 (TM) , y = 600 (TM)

Vậy vận tốc lúc đầu của xe là 40 km/h

Thời gian dự định là 15 giờ

Chiều dài quãng đường là 600 km

3 tháng 5 2017

gọi vận tốc dự định đi hết quãng đg AB là x (km/h) , x >0.

suy ra tg dự định đi hết quãng đg AB là 100/x  ( h)

1/3 quãng đg đầu xe đi hết  : 100x/3  (h)

2/3 quãng đg sau xe đi với vận tốc  (x + 10) km/h hết 200(x+10)/3 (h)

theo bài ra ta có pt  :

\(\frac{100}{x}-\frac{1}{6}=\frac{100}{3x}+0,5+\frac{200}{3\left(x+10\right)}\)

gpt ta tìm x 

9 tháng 4 2020

Vận tốc dự định là x ( km/h ) 

Thời gian dự định là 7 ( h ) 

Quãng đường là xy ( km) 

*) Mỗi giờ chậm hơn 10km => (  x - 10 ) km / h

=> t = \(\frac{xy}{\left(x-10\right)}=y-\frac{4}{5}\)

*) Mỗi giờ chậm hơn 20 km 

t=\(\frac{xy}{x-20}=y-2\)

<=>\(\hept{\begin{cases}xy=\left(x-20\right)\left(y-2\right)\\5xy=\left(5y-4\right)\left(x-10\right)\end{cases}}\)

<=> \(\hept{\begin{cases}xy=xy-2x-20y+40\\5xy=5xy-50y-4x+40\end{cases}}\)

<=> \(\hept{\begin{cases}2x+20y=40\\50y+4x=40\end{cases}}\)

<=> \(\hept{\begin{cases}x=60\\y=4\end{cases}}\)

3 tháng 2 2021

Đáp án:

Vận tốc dự định của ô tô là 60km/h, quãng đường AB là 240km

Giải thích các bước giải:

Đổi : $48'=\dfrac{4}{5}h

Gọi vận tốc dự định của ô tô đi từ A đếnB là x (km/h) (x>0)

Thời gian dự định của xe đi từ A đến B là y (h) (y>0)

Nếu xe chạy mỗi giờ chậm hơn 10km thì đến B chậm hơn 4545 h khi đó:

Vận tốc của xe là x-10 (km/h)

Thời gian đi của xe là y+4545 (h)

⇒⇒ Độ dài quãng đường là (x−10)(y+45)(x−10)(y+45) (km)

⇒⇒ Ta có pt: (x−10)(y+45)=xy(x−10)(y+45)=xy

↔45x−10y=8⇔4x−50y=40↔45x−10y=8⇔4x−50y=40 (1)

Nếu xe mỗi giờ chạy chậm 20 km thì đến chậm hơn 2h khi đó:

Vận tốc của xe là x-20 (km/h)

Thời gian đi của xe là y+2 (h)

⇒⇒ Độ dài quãng đường là (x-20)(y+2) (km)

⇒⇒ Ta có pt: (x−20)(y+2)=xy(x−20)(y+2)=xy

⇔2x−20y=40⇔x−10y=20⇔2x−20y=40⇔x−10y=20 (2)

Ta có hệ phương trình (1) và (2)

(2) ⇒x=20+10y⇒x=20+10y thay vào (1) ta được:

4(20+10y)−50y=40⇒y=4⇒x=60⇒4(20+10y)−50y=40⇒y=4⇒x=60⇒ quãng đường AB là 4.60=240km4.60=240km

Vậy vận tốc dự định của ô tô là 60km/h và quãng đường AB là 240km.

2 tháng 6 2017

Gọi x (km/h) là vận tốc dự định (x > 0) 
Thời gian theo dự định là 80/x (h) 
1/4 quãng đường là 80:4 = 20km 
Thời gian đi 20km là 20/(x - 15) (h) 
Quãng đường còn lại là 80 - 20 = 60 km 
Thời gian đi 60km là 60/(x + 10) (h) 
Theo đề ra, có pt: 20/(x - 15) + 60/(x + 10) = 80/x 
Giải pt, tìm được x = 40 (tmđk) 
Vậy vận tốc dự định là 40km/h 
Do đó thời gian dự định là 80/40 = 2 giờ

2 tháng 6 2017

=2 giờ nha bn

28 tháng 3 2023

Gọi vận tốc ban đầu là \(x\) ( \(x\) > 0)

Sau hai giờ quãng đường người đó còn phải đi là: 160 - 2\(x\) (km)

Thời gian người đó đi nốt quãng đường còn lại là: \(\dfrac{160-2x}{x+8}\) (giờ)

Đổi 20 phút = \(\dfrac{20}{60}\) phút = \(\dfrac{1}{3}\) giờ 

Thời gian dự định ban đầu để đi hết quãng đường AB là: \(\dfrac{160}{x}\) ( giờ)

Theo bài ra ta có phương trình:

2  + \(\dfrac{1}{3}\)  + \(\dfrac{160-2x}{x+8}\)  = \(\dfrac{160}{x}\)

7\(x\)(\(x+8\)) + 3\(x\)( 160 - 2\(x\)) = 3.160.(\(x+8\))

7\(x^2\) + 56\(x\) + 480 \(x\) - 6\(x^2\)  = 480\(x\) + 3840

7\(x^2\) + 56\(x\) + 480\(x\) - 6\(x^2\) - 480\(x\) - 3840 =0

\(x^2\) + 56\(x\) - 3840 = 0 

Δ' = 282 + 3840 = 4624

\(x_1\) = \(\dfrac{-28+\sqrt{4624}}{1}\) = \(-28+68\) = 40 (thỏa mãn)

\(x_2\) = \(\dfrac{-28-\sqrt{4624}}{1}\) = -28 - 68 = -96  (loại)

Vậy \(x\) = 40

Kết luận vận tốc ban đầu của xe máy là: 40 km/h