Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc dự định của người đi xe đạp là x(km/h)
(Điều kiện: x>0)
Thời gian dự kiến sẽ đi hết quãng đường là \(\dfrac{20}{x}\left(h\right)\)
Vận tốc sau khi giảm đi 2km/h là:
x-2(km/h)
Sau 1h thì xe đạp đi được: 1*x=x(km)
Độ dài quãng đường còn lại là 20-x(km)
Thời gian thực tế đi hết quãng đường là:
\(1+\dfrac{20-x}{x-2}\left(h\right)\)
Vì người đó đi chậm hơn dự định 30p=0,5h nên ta có:
\(1+\dfrac{20-x}{x-2}-\dfrac{20}{x}=0,5\)
=>\(\dfrac{20-x}{x-2}-\dfrac{20}{x}=\dfrac{-1}{2}\)
=>\(\dfrac{x\left(20-x\right)-20\left(x-2\right)}{x\left(x-2\right)}=\dfrac{-1}{2}\)
=>\(\dfrac{20x-x^2-20x+40}{x\left(x-2\right)}=\dfrac{-1}{2}\)
=>\(\dfrac{x^2-40}{x\left(x-2\right)}=\dfrac{1}{2}\)
=>\(2\left(x^2-40\right)=x\left(x-2\right)\)
=>\(2x^2-80-x^2+2x=0\)
=>\(x^2+2x-80=0\)
=>\(\left(x+10\right)\left(x-8\right)=0\)
=>\(\left[{}\begin{matrix}x+10=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-10\left(loại\right)\\x=8\left(nhận\right)\end{matrix}\right.\)
Vậy: vận tốc dự định là 8km/h
Gọi vận tốc của xe lúc đầu là x (km/h) , chiều dài quãng đường AB là y (km) (x>10,y>0)
Theo đề bài :
Xin lỗi mình còn thiếu:
Hệ hương trình : \(\hept{\begin{cases}\frac{y}{x+10}=\frac{y}{x}-3\\\frac{y}{x-10}=\frac{y}{x}+5\end{cases}}\)
Giải ra được : x = 40 (TM) , y = 600 (TM)
Vậy vận tốc lúc đầu của xe là 40 km/h
Thời gian dự định là 15 giờ
Chiều dài quãng đường là 600 km
gọi vận tốc dự định đi hết quãng đg AB là x (km/h) , x >0.
suy ra tg dự định đi hết quãng đg AB là 100/x ( h)
1/3 quãng đg đầu xe đi hết : 100x/3 (h)
2/3 quãng đg sau xe đi với vận tốc (x + 10) km/h hết 200(x+10)/3 (h)
theo bài ra ta có pt :
\(\frac{100}{x}-\frac{1}{6}=\frac{100}{3x}+0,5+\frac{200}{3\left(x+10\right)}\)
gpt ta tìm x
Vận tốc dự định là x ( km/h )
Thời gian dự định là 7 ( h )
Quãng đường là xy ( km)
*) Mỗi giờ chậm hơn 10km => ( x - 10 ) km / h
=> t = \(\frac{xy}{\left(x-10\right)}=y-\frac{4}{5}\)
*) Mỗi giờ chậm hơn 20 km
t=\(\frac{xy}{x-20}=y-2\)
<=>\(\hept{\begin{cases}xy=\left(x-20\right)\left(y-2\right)\\5xy=\left(5y-4\right)\left(x-10\right)\end{cases}}\)
<=> \(\hept{\begin{cases}xy=xy-2x-20y+40\\5xy=5xy-50y-4x+40\end{cases}}\)
<=> \(\hept{\begin{cases}2x+20y=40\\50y+4x=40\end{cases}}\)
<=> \(\hept{\begin{cases}x=60\\y=4\end{cases}}\)
Đáp án:
Vận tốc dự định của ô tô là 60km/h, quãng đường AB là 240km
Giải thích các bước giải:
Đổi : $48'=\dfrac{4}{5}h
Gọi vận tốc dự định của ô tô đi từ A đếnB là x (km/h) (x>0)
Thời gian dự định của xe đi từ A đến B là y (h) (y>0)
Nếu xe chạy mỗi giờ chậm hơn 10km thì đến B chậm hơn 4545 h khi đó:
Vận tốc của xe là x-10 (km/h)
Thời gian đi của xe là y+4545 (h)
⇒⇒ Độ dài quãng đường là (x−10)(y+45)(x−10)(y+45) (km)
⇒⇒ Ta có pt: (x−10)(y+45)=xy(x−10)(y+45)=xy
↔45x−10y=8⇔4x−50y=40↔45x−10y=8⇔4x−50y=40 (1)
Nếu xe mỗi giờ chạy chậm 20 km thì đến chậm hơn 2h khi đó:
Vận tốc của xe là x-20 (km/h)
Thời gian đi của xe là y+2 (h)
⇒⇒ Độ dài quãng đường là (x-20)(y+2) (km)
⇒⇒ Ta có pt: (x−20)(y+2)=xy(x−20)(y+2)=xy
⇔2x−20y=40⇔x−10y=20⇔2x−20y=40⇔x−10y=20 (2)
Ta có hệ phương trình (1) và (2)
(2) ⇒x=20+10y⇒x=20+10y thay vào (1) ta được:
4(20+10y)−50y=40⇒y=4⇒x=60⇒4(20+10y)−50y=40⇒y=4⇒x=60⇒ quãng đường AB là 4.60=240km4.60=240km
Vậy vận tốc dự định của ô tô là 60km/h và quãng đường AB là 240km.
Gọi x (km/h) là vận tốc dự định (x > 0)
Thời gian theo dự định là 80/x (h)
1/4 quãng đường là 80:4 = 20km
Thời gian đi 20km là 20/(x - 15) (h)
Quãng đường còn lại là 80 - 20 = 60 km
Thời gian đi 60km là 60/(x + 10) (h)
Theo đề ra, có pt: 20/(x - 15) + 60/(x + 10) = 80/x
Giải pt, tìm được x = 40 (tmđk)
Vậy vận tốc dự định là 40km/h
Do đó thời gian dự định là 80/40 = 2 giờ
Gọi vận tốc ban đầu là \(x\) ( \(x\) > 0)
Sau hai giờ quãng đường người đó còn phải đi là: 160 - 2\(x\) (km)
Thời gian người đó đi nốt quãng đường còn lại là: \(\dfrac{160-2x}{x+8}\) (giờ)
Đổi 20 phút = \(\dfrac{20}{60}\) phút = \(\dfrac{1}{3}\) giờ
Thời gian dự định ban đầu để đi hết quãng đường AB là: \(\dfrac{160}{x}\) ( giờ)
Theo bài ra ta có phương trình:
2 + \(\dfrac{1}{3}\) + \(\dfrac{160-2x}{x+8}\) = \(\dfrac{160}{x}\)
7\(x\)(\(x+8\)) + 3\(x\)( 160 - 2\(x\)) = 3.160.(\(x+8\))
7\(x^2\) + 56\(x\) + 480 \(x\) - 6\(x^2\) = 480\(x\) + 3840
7\(x^2\) + 56\(x\) + 480\(x\) - 6\(x^2\) - 480\(x\) - 3840 =0
\(x^2\) + 56\(x\) - 3840 = 0
Δ' = 282 + 3840 = 4624
\(x_1\) = \(\dfrac{-28+\sqrt{4624}}{1}\) = \(-28+68\) = 40 (thỏa mãn)
\(x_2\) = \(\dfrac{-28-\sqrt{4624}}{1}\) = -28 - 68 = -96 (loại)
Vậy \(x\) = 40
Kết luận vận tốc ban đầu của xe máy là: 40 km/h