Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo theo đường link ( tại mik lười :v )
Một tam giác có chu vi bằng 36cm,ba cạnh của nó tỉ lệ thuận với 3;4;5.Tính độ dài ba cạnh của tam giác đó - Hoc24
Gọi độ dài 3 cạnh của tam giác đó lần lượt là a, b, c \(\left(a,b,c\inℕ^∗;a,b,c< 36\right)\)
Ta có: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\)
\(\Rightarrow a=9\), \(b=12\), \(c=15\)
Vậy độ dài 3 cạnh của tam giác lần lượt là \(9cm\), \(12cm\), \(15cm\)
Gọi 3 cạnh của nó là a, b, c
Ta có:
a/3 = b/4 = c/5 và a + b + c = 36
Áp dụng tính chất dãy tỉ số bằng nhau, có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\)
Suy ra: a/3 = 3 => a = 3 . 3 = 9
b/4 = 3 => b = 4 . 3 = 12
c/5 = 3 => c = 5 . 3 =15
Vậy 3 cạnh đó lần lượt là: 9 ; 12 ; 15 (cm)
Gọi độ dài ba cạnh của tam giác đó lần lượt là a ; b ; c ( cm, a ; b ; c \(\in\)N*)
Giả sử a < b < c
Vì độ dài 3 cạnh của tam giác đó tỉ lệ với 3 ; 4 ; 5
=> \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Áp dụng tích chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\)( Vì chu vi của tam giác đó là 36 và a ; b ; c là độ dài 3 cạnh của tam giác đó)
Khi đó a = 3.3 = 9 cm ; b = 3.4 = 12 cm ; c = 3.5 = 15 cm
Vậy......
Học tốt
#Dương
Gọi độ dài của 3 cạnh tam giác lần lượt là: a, b, c
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{84}{12}=7\)
Khi đó:
\(\dfrac{a}{3}=7\Rightarrow a=7.3=21\left(cm\right)\)
\(\dfrac{b}{4}=7\Rightarrow b=7.4=28\left(cm\right)\)
\(\dfrac{c}{5}=7\Rightarrow c=7.5=35\left(cm\right)\)
Gọi x (cm), y (cm), z (cm) lần lượt là độ dài ba cạnh của tam giác đó (x, y, z > 0)
Do chu vi của tam giác là 84 cm nên x + y + z = 84
Do ba cạnh tỉ lệ với 3; 4; 5 nên \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{84}{12}=7\)
\(\dfrac{x}{3}=7\Rightarrow x=7.3=21\left(cm\right)\)
\(\dfrac{y}{4}=7\Rightarrow y=7.4=28\left(cm\right)\)
\(\dfrac{z}{5}=7\Rightarrow z=7.5=35\left(cm\right)\)
Vậy độ dài ba cạnh của tam giác lần lượt là: 21 cm, 28 cm, 35 cm
a) goi a,b,c lan luot la 3 phan cua so18 ( a,b,c>0)
theo de bai ta co:
a,b,c ti le nghich voi 3;4;6
a+b+c=18
--> a.3=b.4=c.6 va a+b+c=18
--> \(\frac{a.3}{12}=\frac{b.4}{12}=\frac{c.6}{12}\)va a+b+c=18
-> \(\frac{a}{4}=\frac{b}{3}=\frac{c}{2}\)va a+b+c=18
Ap dung t/c day ti so bang nhau ta co
\(\frac{a}{4}=\frac{b}{3}=\frac{c}{2}\)=\(\frac{a+b+c}{4+3+2}=\frac{18}{9}=2\)
-> a/4=2 =>a=4.2=8
b/3=2->b=3.2=6
c/2=2->c=2.2=4
b) tuong tu
c) goi a,b,c ( m) lan luot la do dai 3 canh cua tam giacc(a,b,c>0)
theo de bai ta co
a,b,c ti le thuan 5,13,12 va a+b+c=156
--> \(\frac{a}{5}=\frac{b}{13}=\frac{c}{12}=\frac{a+b+c}{5+13+12}=\frac{156}{30}=\frac{26}{5}\)
--> a/5 =26/5--> a=26
b/13=26/5-> b=338/5
c/12=26/5-> c=312/5
Vay do dai 3 canh lan luot la 26cm ,338/5 cm, 312/5 cm
d) Goi a,b,c (cm) lan luot la do dai 3 canh cua tam giac do ( a,b,c>0)
theo de bai ta co:
a,b,c ti le nghich 8,9,12 va a+b+c=52
-> a.8=b.9=c.12 va a+b+c=42
-> \(\frac{a.8}{72}=\frac{b.9}{72}=\frac{c.12}{72}\)va a+b+c=52
->\(\frac{a}{9}=\frac{b}{8}=\frac{c}{6}\)va a+b+c=52
tu giai
Gọi độ dài từng cạnh của tam giác đó lần lượt là a,b,c(a,c,b>0)
Theo đề bài ta có: \(\hept{\begin{cases}a+b+c=3\\\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{3}{12}=\frac{1}{4}\)
\(\Rightarrow\hept{\begin{cases}a=\frac{3}{4}\\b=1\\c=\frac{5}{4}\end{cases}}\)
Gọi ba cạnh của tam giác lần lượt là a,b,c.(0< a,b,c <3; đơn vị:cm)
Theo bài ra ta có : \(\hept{\begin{cases}\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\\a+b+c=3\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{3}{12}=\frac{1}{4}\)
\(\frac{a}{3}=\frac{1}{4}\Rightarrow a=\frac{3}{4}\left(cm\right)\)
\(\frac{b}{4}=\frac{1}{4}\Rightarrow b=1\left(cm\right)\)
\(\frac{c}{5}=\frac{1}{4}\Rightarrow c=\frac{5}{4}\left(cm\right)\)
Gọi độ dài ba cạnh của một tam giác là \(x,y,z\left(x,y,z\inℕ^∗,m\right)\)
Theo đề, ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}};x+y+z=611\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{4}+\frac{1}{5}}=\frac{611}{\frac{47}{60}}=780\)
Do đó:
\(\frac{x}{\frac{1}{3}}=780\Rightarrow x=780.\frac{1}{3}=260\)
\(\frac{y}{\frac{1}{4}}=780\Rightarrow x=780.\frac{1}{4}=195\)
\(\frac{x}{\frac{1}{5}}=780\Rightarrow z=780.\frac{1}{5}=156\)
Vậy độ dài ba cạnh tam giác lần lượt là: \(260;195;156m\)
Gọi độ dài 3 cạnh lần lượt là a,b,c (a,b,c>0)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{36}{12}=3\)
\(\dfrac{a}{3}=3\Rightarrow a=9\\ \dfrac{b}{4}=3\Rightarrow b=12\\ \dfrac{c}{5}=3\Rightarrow c=15\)
Vậy độ dài 3 cạnh tam giác lần lượt là 9, 12, 15 cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{36}{12}=3\)
Do đó: a=9; b=12; c=15