Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng quát : \(u=a\cos(2\pi f t-2\pi \frac{x}{\lambda})cm.\)\(\Rightarrow \lambda = 3m, w = \pi/3 (rad/s)\Rightarrow f = 1/6Hz.\)
\(v = \lambda.f = 3.1/6= 0.5m/s.\)
Ta có: \(\frac{2\pi}{\lambda}=0,02\pi\Rightarrow\lambda=100\left(cm\right)\)
\(\Rightarrow v=\lambda.f=\frac{\omega}{2\pi}\lambda=200\left(cm/s\right)\)
\(\lambda = v/f=20/50=0.4cm.\)
\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{4,8-5,3}{0,4}-\frac{0}{2\pi})|=|2a\cos\frac{-5\pi}{4}|=\sqrt{2}a = 2\sqrt{2}\)
\( u_M = A_M\cos(2\pi ft - \pi\frac{d_2+d_1}{\lambda}+\frac{\varphi_1+\varphi_2}{2})=2\sqrt{2}\cos(40 \pi t - \pi\frac{5,3+4,8}{0,4}+\frac{0}{2}) = 2\sqrt{2}\cos(40 \pi t - \pi\frac{5,3+4,8}{0,4})\\ = 2\sqrt{2}\cos(40 \pi t - 25,25\pi)mm.\)
Bước sóng: \(\lambda=\frac{v}{f}=\frac{20}{5}=4cm\)
Phương trình sóng do S1 truyền đến M: \(u_{M1}=2\cos\left(10\pi t-\frac{2\pi d_1}{\lambda}\right)=2\cos\left(10\pi t-\frac{2\pi.10}{4}\right)=2\cos\left(10\pi t-5\pi\right)\)
Phương trình sóng do S2 truyền đến M: \(u_{M2}=2\cos\left(10\pi t-\frac{2\pi d_2}{\lambda}\right)=2\cos\left(10\pi t-\frac{2\pi.6}{4}\right)=2\cos\left(10\pi t-3\pi\right)\)
Phương trình sóng tại M: \(u_M=u_{M1}+u_{M2}=2\cos\left(10\pi t-5\pi\right)+2\cos\left(10\pi t-3\pi\right)=4.\cos\pi.\cos\left(10\pi t-4\pi\right)=4.\cos\left(10\pi t-3\pi\right)\)(cm)
Bước sóng \(\lambda = v/f = 1/25 = 0.04m = 4cm.\)
Độ lệch pha giữa hai nguồn sóng là \(\triangle\varphi= \varphi_2-\varphi_1 = \frac{5\pi}{6}+\frac{\pi}{6} = \pi.\)
Biên độ sóng tại điểm M là \( A_M = |2a\cos\pi(\frac{10-50}{4}-\frac{\pi}{2\pi})| =0.\)
Ta có: \(\dfrac{2\pi.x}{\lambda}=0,02\pi.x\)
\(\Rightarrow \lambda=\dfrac{2}{0,02}=100 cm\)
\(u=2\cos\left(20\pi\left(t-\frac{x}{25}\right)\right)=2\cos\left(20\pi t-\frac{4\pi x}{5}\right)\)
\(\Rightarrow\lambda=\frac{5}{2}\left(m\right)=250\left(cm\right)\)
\(f=\frac{\omega}{2\pi}=\frac{20\pi}{2\pi}=10\left(Hz\right)\)
\(\Rightarrow v=f.\lambda=10.250=2500\left(cm/s\right)=25\left(m/s\right)\)
Đáp án C