Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình chỉ giải được câu 1 thôi nhé
số nguyên tố là số >1 có 2 ước
gọi số đó là 12k+9
a=12k+9 mà số nguyên tố là số >1 suy ra a >9 achia hết cho 3
vậy không có số nguyên tố thõa mãn
Bài 1 : Bài giải
a) \(942^{60}-357^{37}=942^{60}-357^{36}\cdot357=\left(942^4\right)^{15}-\left(357^4\right)^9\cdot357=\overline{\left(...6\right)}^{15}-\overline{\left(...1\right)}^9\cdot357\)
\(=\overline{\left(...6\right)}-\overline{\left(...1\right)}\cdot357=\overline{\left(...6\right)}-\overline{\left(...7\right)}=\overline{\left(...9\right)}\text{ }⋮̸\text{ }5\)
\(\Rightarrow\text{ Đề sai}\)
Ba số tự nhiên liên tiếp là p ; p + 1 và p + 2
Vì p và p + 2 đều là số nguyên tố nên số ở giữa p + 1 phải chia hết cho 2 ( 1 )
Mà 3 số tự nhiên liên tiếp phải có 1 số chia hết cho 3. Vì 2 số kia là số nguyên tố
=> p + 1 chia hết cho 3 ( 2 ). Từ ( 1 ) ( 2 ) => p + 1 chia hết cho 2 và 3 <=> p + 1 chia hết cho 6
p là số nguyên tố lớn hơn 3 nên p lẻ, do đó p+1⋮⋮2 (1)
p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2.
Dạng 3k+1 không xảy ra.
Dạng 3k+2 cho ta p+1⋮3 (2).
Từ (1) và (2) cho ta p+1⋮6
một số nguyên tố khi chia cho 12 có thể dư 1,3,5,7,9,11
Vậy khi có 7 số nguyên tố thì theo nguyên lí dirichlet thì luôn tồn tại hai số nguyên tố có cùng số dư khi chia cho 12
hay nói cách khác luôn tồn tịa hai số có hiệu chia hết chi 12
gyuhxrxtxtfixyuttfzrwertyui4r5t6yuizxc v