K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2016

Đặt a1=14;a2=144;a3=1444;an=144..4, ta xét các trường hợp a, n<4.

Ta dễ dàng thấy a1=14 không phải là số chính phương và a2=144=122 ; a3=1444=382 là các số chính phương.

b,n>4

Ta có : an=144..4=10000b+4444(bεZ) 

Vì 10000:16 và 4444 chia 16 dư 12 nên an chia 16 dư 12

Giả sử an=(4k+2)2=16(k2+k)+4=>an chia 16 dư 4. Vô lý.

Vậy an không phải là số chính phương.

Kết luận : Trong dãy số tự nhiên an=144..4,, chỉ có a2=144 và a3=1444 là các số chính phương

28 tháng 5 2016

hổng biết nha bạn

m cx đng cần gấp 

28 tháng 5 2016

bài toán trên online math bạn tự tìm hiểu

 

28 tháng 5 2016

Mk cũng đang cần giải bài này gấp!!!!!!bucqua

31 tháng 5 2016

Đặt a1=14;a2=144;a3=1444;an=144..4, ta xét các trường hợp a, n<4.

Ta dễ dàng thấy a1=14 không phải là số chính phương và a2=144=122 ; a3=1444=382 là các số chính phương.

b,n>4

Ta có : an=144..4=10000b+4444(bεZ) 

Vì 10000:16 và 4444 chia 16 dư 12 nên an chia 16 dư 12

Giả sử an=(4k+2)2=16(k2+k)+4=>an chia 16 dư 4. Vô lý.

Vậy an không phải là số chính phương.

Kết luận : Trong dãy số tự nhiên an=144..4,, chỉ có a2=144 và a3=1444 là các số chính phương

Chỉ biết mấy cái sau về đặc điểm của số chính phương mà không biết chứng minh . Các bạn giúp mình chứng minh nhé .Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.Khi phân tích 1 số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư...
Đọc tiếp

Chỉ biết mấy cái sau về đặc điểm của số chính phương mà không biết chứng minh . Các bạn giúp mình chứng minh nhé .

  • Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.
  • Khi phân tích 1 số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.
  • Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1.
  • Công thức để tính hiệu của hai số chính phương: a^2-b^2=(a+b)x(a-b).
  • Số ước nguyên duơng của số chính phương là một số lẻ.
  • Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2.
  • Tất cả các số chính phương có thể viết thành dãy tổng của các số lẻ tăng dần từ 1: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 +7, 1 + 3 + 5 +7 +9 v.v...
2
21 tháng 11 2015

1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9

2. 

Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)

 

 

                                                                          

21 tháng 11 2015

chưa hẳn số chính phương bao giờ cũng TC = các chữ số đó đâu

VD: 21 không là số chính phương

81=92 là số chính phương

29 tháng 8 2016

Gọi số phải tìm là abcd = n² 
=> số viết theo thứ tự ngược lại là dcba = m² với m,n là các số tự nhiên và m>n 
Do abcd và dcba đều ≤ 9999 và ≥ 1000 nên: 
1000 ≤ m², n² ≤ 9999 => 32 ≤ m,n ≤ 99 (vì m,n € N) 
abcd và dcba đều chính phương nên: a,d € {1,4,6,9} (các số cp tận cùng chỉ có thể là 1,4,6 hoặc 9) và a<d (♣) 
Do dcba chia hết cho abcd nên: m² chia hết cho n² hay m chia hết cho n. 
Đặt m = k.n với k € N và k ≥ 2: dcba = k². abcd 
Ta có: 
m = k.n ≤ 99 
32 ≤ n 
=> 32.k.n ≤ 99n => k ≤ 99/32 => k≤ 3 
Như vậy: k = 2 hoặc 3 
+Nếu k = 2 thì: dcba = 4.abcd (♥) 
Theo (♣) a € {1,4,6,9}: nếu a=4 thì: dcb4 = 4bcd . 4 > 9999 => a chỉ có thể là 1. 
Khi đó: dcb1 = 4. 1bcd ≤ 4.1999 = 7996 => d ≤ 7. Kết hợp với (♣) đc: d= 4 hoặc d =6 
Với d=4: (♥) <=> 390b+15=60c <=> 26b+1=4c (vô lý vì vế trái chẵn còn vế phải lẻ) 
Với d = 6: (♥) <=> 390b+23 = 60c+2000 (cũng vô lý) 
+Như vậy: k =3. Khi đó: dcba = 9.abcd (♦) 
a chỉ có thể là 1 và d = 9. Khi đó: (♦) <=> 9cb1 = 9.1bc9 
<=> 10c = 800b+80 <=> c = 80b+8 
Điều này chỉ có thể xảy ra <=> b=0 và c=8 
KL: số phải tìm là: 1089 

31 tháng 12 2017

Mình tìm hiểu thì biết số chính phương là số bình phương của 1 số nguyên. 
2 số cần tìm : 
9801 = 99^2 
và 1089 = 33^2 

22 tháng 11 2017

n^2+n+6=k^2

4n^2+4n+24=4k^2

(2n+1)^2-(2k)^2=-23

(2n+1-2k)(2n+1+2k)=-23

Đến đây bạn tự giải tiếp nhé

2 tháng 10 2016

toán lớp 6

24 tháng 8 2019

giúp mình làm bài này với:tìm x

a,x+4=2mu0+1mu2019

b,1+1/3+1/6+1/10+....+1/x nhan (x+1):2

SO SÁNH

A=2011mu2010+1/2011mu2011+1 và B=2011mu2011+1/2011mu2012+1

8 tháng 2 2019

ko vì 

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

8 tháng 2 2019

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)