Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10cm A H B O
Giả sử căt hình đó thành 1 mặt phẳng đi qua trục của nón ta được thiết diện như hình vẽ. Trong đó tam giác ABC là tam giác đều và là thiết diện của khối nón. Hình tròn tâm I là thiết diện của quả bóng.
Ta nhận thấy tam giác ABC ngoại tiếp đường tròn tâm I
Hình nón có chiều cao là \(OH=3IH=30\) (cm)
Bán kính đáy nón là \(HA=\frac{30}{\sqrt{3}}=10\sqrt{3}\left(cm\right)\)
Thể tích khối nón là \(V_1=\frac{1}{3}OH.\pi.AH^2=\frac{1}{3}.30\pi.300=3000\pi\left(cm^3\right)\)
Thể tích phần không gian bên trong khối nón không bị quả bóng chiếm chỗ là :
\(V_2=\frac{1}{3}OH.\pi.AH^2-\frac{1}{4}\pi.IH^2=3000\pi-\frac{4000}{3}\pi=\frac{5000}{3}\pi\left(cm^3\right)\)
Ta có : \(y'=3x^2-6mx+3\left(m^2-1\right)\)
Để hàm số có cực trị thì phương trình \(y'=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow x^2-2mx+m^2-1=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta=1>0\) với mọi m
Cực đại của đồ thị hàm số là A(m-1;2-2m) và cực tiểu của đồ thị hàm số là B (m+1; -2-2m)
Theo giả thiết ta có :
\(OA=\sqrt{2}OB\Leftrightarrow m^2+6m+1\Leftrightarrow\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)
Vậy có 2 giá trị m là \(\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)