Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc dự định của xe là x (km/h; x > 0)
Thời gian ô tô dự định đi là \(\dfrac{120}{x}\) (giờ)
Sau 2h đi, ô tô đi được: 2x (km)
Vận tốc lúc sau của ô tô là x + 10 (km/h)
Thời gian của ô tô đi trên quãng đường còn lại là \(\dfrac{120-2x}{x+10}\) (giờ)
Do người đó đến B đúng thời gian dự tính => ta có phương trình:
\(2+\dfrac{1}{2}+\dfrac{120-2x}{x+10}=\dfrac{120}{x}\)
<=> (x-30)(x+80) = 0
Mà x > 0
<=> x = 30 (tm)
Vận tốc của xe là 30km/h
Thời gian xe đi là \(\dfrac{120}{30}=4\left(giờ\right)\)
Gọi vận tốc dự định là x
Thời gian dự định là 90/x
Theo đề, ta có: \(\dfrac{30}{x}+\dfrac{60}{x+6}+\dfrac{1}{3}=\dfrac{90}{x}\)
=>\(\dfrac{-60}{x}+\dfrac{60}{x+6}=\dfrac{-1}{3}\)
=>\(\dfrac{-60x-360+60x}{x^2+6x}=\dfrac{-1}{3}\)
=>-x^2-6x=-1080
=>x^2+6x-1080=0
=>x=30
Lời giải:
Gọi vận tốc dự định ban đầu là $a$ km/h
Thời gian dự định: $\frac{120}{a}$ (h)
Người đó đi 1/3 quãng đường đầu với thời gian $\frac{120}{a}:3=\frac{40}{a}$ (h)
Nghỉ thêm 40' nghĩa là nghỉ $\frac{2}{3}$ h
$120(1-\frac{1}{3})=80$ km còn lại đi với thời gian: $\frac{80}{a+10}$ (h)
Ta có:
$\frac{40}{a}+\frac{2}{3}+\frac{80}{a+10}=\frac{120}{a}$
$\Leftrightarrow \frac{2}{3}+\frac{80}{a+10}=\frac{80}{a}$
Giải pt trên với đk $a>0$ ta có: $a=30$ (km/h)
Gọi vận tốc dự địnhlà x
Thời gian dự kiến là 120/x
Theo đề, ta có: \(\dfrac{40}{x}+\dfrac{2}{3}+\dfrac{80}{x+10}=\dfrac{120}{x}\)
=>\(\dfrac{80}{x+10}-\dfrac{80}{x}=\dfrac{-2}{3}\)
=>\(\dfrac{40}{x}-\dfrac{40}{x+10}=\dfrac{1}{3}\)
=>\(\dfrac{40x+400-40x}{x^2+10x}=\dfrac{1}{3}\)
=>x^2+10x=1200
=>x^2+10x-1200=0
=>(x+40)(x-30)=0
=>x=30
Gọi vận tốc dự định là x
Theo đề,ta có: \(\dfrac{120}{x}=\dfrac{40}{x}+\dfrac{2}{5}+\dfrac{80}{x+10}\)
=>\(\dfrac{80}{x}-\dfrac{80}{x+10}=\dfrac{2}{5}\)
=>\(\dfrac{40}{x}-\dfrac{40}{x+10}=\dfrac{1}{5}\)
=>\(\dfrac{40x+400-40x}{x\left(x+10\right)}=\dfrac{1}{5}\)
=>x^2+10x-2000=0
=>x=40