Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: SỐ cách xếp là;
5!*6!*2=172800(cách)
b: Số cách xếp là \(6!\cdot5!=86400\left(cách\right)\)
+) Xếp 4 bạn vào 4 ghế là sự hoán vị của 4 phần tử. Do đó, không gian mẫu là: \(n\left( \Omega \right) = 4!\) ( phần tử)
a) +) Gọi A là biến cố “Bạn Thảo ngồi ghế đầu tiên”
Ghế đầu tiên là ghế của Thảo nên có 1 cách chọn, 3 ghế còn lại xếp tùy ý 3 bạn nên ta có sự hoán vị của 3 phần tử. Theo quy tắc nhân, ta có: \(n\left( A \right) = 1.3!\) ( phần tử)
+) Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{1}{4}\)
b) +) Gọi B là biến cố “Bạn Thảo ngồi ghế đầu tiên và bạn Huy ngồi ghế cuối cùng”.
Ghế đầu tiên của bạn Thảo và ghế cuối cùng của bạn Huy nên có 1 cách chọn cho cả 2 ghế, 2 ghế còn lại xếp tùy ý 2 bạn nên ta có sự hoán vị của 2 phần tử. Theo quy tắc nhân, ta có: \(n\left( B \right) = 1.1.2!\) ( phần tử)
+) Vậy xác suất của biến cố B là: \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{1}{{12}}\)
Không gian mẫu: \(12!\)
Xếp 8 nam: có \(8!\) cách
8 nam tạo thành 9 khe trống, xếp 4 nữ vào 9 khe trống này: \(A_9^4\) cách
\(\Rightarrow8!.A_9^4\) cách
Xác suất: \(P=\dfrac{8!.A_9^4}{12!}=\)
Câu này có thể coi như không giải theo cách gián tiếp được (thực ra là có giải được nhưng ko ai giải kiểu đó hết), nó bao gồm các trường hợp 4 nữ cạnh nhau, 3 nữ cạnh nhau, 2 nữ cạnh nhau, trong đó trường hợp trước còn bao hàm trường hợp sau cần loại trừ nữa
Xếp 4 bạn nữ: có \(4!\) cách
4 bạn nữ tạo ra 5 khe trống, xếp 2 bạn nam vào 5 khe trống đó: \(A_5^2\) cách
Vậy tổng cộng có \(4!.A_5^2\) cách xếp thỏa mãn
a. \(C^1_7=7\left(cách\right)\)
b. \(C^1_3=3\left(cách\right)\)
c. Số cách không ra bạn nữ là chỉ chọn nam, vậy số cách chọn ít nhất 1 nữ là: \(7-3=4\left(cách\right)\)