Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc của xe máy là x (km/h), xe đạp y (km/h) (x,y>0)
40 phút = \(\frac{2}{3}\)giờ
Quãng đường xe máy đi là \(\frac{2}{3}\times x\)
Quãng đường xe đạp đi là \(\frac{2}{3}\times y\)
Vì họ gặp nhau nếu đi ngược chiều nên:
\(\frac{2}{3}\times x+\frac{2}{3}\times y=30\)
\(\Rightarrow x+y=45\left(1\right)\)
Nếu đi cùng chiều thì sau 2h xe máy đuổi kịp xe đạp nên ta có:
\(2x-2y=AB=30\)
\(\Rightarrow x-y=15\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}x+y=45\\x-y=15\end{cases}\Rightarrow\hept{\begin{cases}x=30\\y=15\end{cases}}}\)
Vậy vận tốc mỗi xe là 30 km/h và 15 km/h
Gọi vận tốc xe máy và ô tô là x, y
\(\hept{\begin{cases}\frac{80}{x}=\frac{100}{y}\\\frac{60}{x}=\frac{120-0,9y}{y}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=40\\y=50\end{cases}}\)
Khi xe thứ hai xuất phát thì xe thứ nhất đi được: (8,5 - 7).40 = 60 (km).
Gọi t là thời gian xe thứ hai bắt đầu đi đến khi gặp xe thứ nhất(h) (t>1,5)
=> Quãng đường xe thứ hai đi được cho đến khi gặp xe thứ nhất là: 60t
Quãng đường xe thứ nhất đi được cho đến khi gặp xe thứ hai là: 60 + 40t.
Theo đề ta có phương trình: 60t = 60 + 40t => t = 3.
Vậy hai xe gặp nhau vào lúc: 3 + 8,5 = 11,5 giờ(Không biết giải theo cách lập hệ phương trình sao nữa)
Gọi x là thời gian để hai người gặp được nhau (h) (với điều kiện x>0)
Vậy ta có quãng đường ng thứ nhất đi đc là 0.(x+1) (km)
=> dẽ dàng suy ra đc quãng đường của ng thứ 2 đi đc là 45x (km)
Vì 2 người đó đi cùng một quãng đường nên ta có phương trình như sau:
30(x+1) = 45x
<=>30x +30=45x
<=>30=15x
<=>x=2
Vậy tg người thứ nhất đi là 3h
Tg ng thứ 2 đi là 2h
Vậy đến 7+3 = 10h thì ng thứ 2 đuổi kịp ng thứ nhất
và cách A một quãng = 45.x=45.2 =90km