Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi s là chiều dài nửa quãng đường
Thời gian đi hết nửa quãng đường đầu với vận tốc v1 là t1=sv1t1=sv1 (1)
Thời gian đi hết nửa quãng đường còn lại với vận tốc v2 là t2=sv2t2=sv2 (2)
Vận tốc trung bình của người đi xe đạp trên quãng đường là vtb=2st1+t2vtb=2st1+t2 (3)
Kết hợp (1); (2); (3) có: 1v1+1v2=2vtb1v1+1v2=2vtb
Thay số vtb = 8km/h; v1 = 12km/h
Vận tốc trung bình của người đi xe ở nửa quãng đường sau là v2 = 6km/h
Gọi s là chiều dài nửa quãng đường
Thời gian đi hết nửa quãng đường đầu với vận tốc v1 là t1=s/v1 (1)
Thời gian đi hết nửa quãng đường còn lại với vận tốc v2 là t2=s/v2 (2)
Vận tốc trung bình của người đi xe đạp trên quãng đường là vtb=2s/t1+t2 (3)
Kết hợp (1); (2); (3) có: 1/v1+1/v2=2/vtb
Thay số vtb = 8km/h; v1 = 12km/h
Vận tốc trung bình của người đi xe ở nửa quãng đường sau là v2 = 6km/h
gọi thời gian ở quãng đường đầu và quãng đường thứ hai lần lượt là: t1( S1, V1) , t2( S2, V2)
theo bài ta có : t1=t2=1/2 t
Vtb= S1+S2/ t1+t2= 8
thay dữ liệu vào phép tính trên ta đc:
Vtb= S1+S2/ t1+t2= V1*t1 + V2*t2/ t1+t2 = 1/2t*V1 +1/2t*V2/ 1/2t+1/2t
<=> t*(1/2*V1 +1/2*V2)/ t = 1/2*12 + 1/2*V2 = 8
= 6+ 1/2* V2 = 8
= V2 = 4 (km/h)
Gọi thời gian xe đi đoạn nửa đoạn đầu và nửa đoạn sau là \(t_1\) và \(t_2\)
Thời gian xe đi nửa quãng đường đầu là: \(t_1=\frac{\frac{1}{2}S}{v_1}=\frac{S}{24}\)
Thời gian xe đi nửa quãng đường sau là: \(t_2=\frac{\frac{1}{2}S}{v_2}=\frac{S}{2v_2}\)
Vận tốc trung bình của xe là: \(v_{tb}=\frac{S}{t_1+t_2}=\frac{S}{\frac{S}{24}+\frac{S}{2v_2}}=\frac{1}{\frac{1}{24}+\frac{1}{2v_2}}=8km/h\)
\(\Rightarrow\frac{1}{24}+\frac{1}{2v_2}=\frac{1}{8}\)
\(\Rightarrow2v_2=12\)
\(\Rightarrow v_2=6km/h\)
Thời gian đi nửa quãng đường đầu:
\(t_1=\dfrac{S_1}{v_1}=\dfrac{\dfrac{1}{2}S}{12}=\dfrac{S}{24}h\)
Thời gian đi nửa quãng đường sau:
\(t_2=\dfrac{S_2}{v_2}=\dfrac{\dfrac{1}{2}S}{20}=\dfrac{S}{40}h\)
Vận tốc trung bình:
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{S}{\dfrac{S}{24}+\dfrac{S}{40}}=15\)km/h
Thời gian đi quãng đường đầu và quãng đường sau là:
⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩t1=S1v1=S2v1=S24(h)t2=S2v2=S2v2=S40(h){t1=S1v1=S2v1=S24(h)t2=S2v2=S2v2=S40(h)
Vận tốc trung bình là: vtb=S1+S2t1+t2=SS24+S40=SS(124+140)=15(kmh)vtb=S1+S2t1+t2=SS24+S40=SS(124+140)=15(kmh)
Thời gian đi quãng đường đầu và quãng đường sau là:
\(\left\{{}\begin{matrix}t_1=\dfrac{S_1}{v_1}=\dfrac{S}{2v_1}=\dfrac{S}{24}\left(h\right)\\t_2=\dfrac{S_2}{v_2}=\dfrac{S}{2v_2}=\dfrac{S}{40}\left(h\right)\end{matrix}\right.\)
Vận tốc trung bình là: \(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{S}{\dfrac{S}{24}+\dfrac{S}{40}}=\dfrac{S}{S\left(\dfrac{1}{24}+\dfrac{1}{40}\right)}=15\left(\dfrac{km}{h}\right)\)
Gọi s là quãng đường MN
Thời gian người đạp xe đi hết nữa quãng đường đầu là:
t1 = \(\frac{\frac{s}{2}}{v_1}=\frac{s}{2.20}=\frac{s}{40}\)(h)
Gọi t2 là thời gian đi nữa quãng đường còn lại
Trong nửa thời gian còn lại xe đi với vận tốc v2 thì đi được quãng đường là:
s' = v2 . \(\frac{t_2}{2}=10.\frac{t_2}{2}=5t_2\) (km)
Quãng đường người đó đi được trong nữa thời gian cuối với vận tốc v3 là
s'' = v3 . \(\frac{t_2}{2}=\frac{5}{2}t_2\)(km)
Mặt khác
\(\frac{s}{2}=s'+s''\)
=> \(\frac{s}{2}=5t_2+\frac{5}{2}t_2\)
=> \(\frac{s}{2}=\frac{15}{2}t_2\)
=> t2 = \(\frac{s}{15}\)
Vận tốc trung bình của người đó đi trong cả quãng đường MN là:
\(v_{tb}=\frac{s}{t_1+t_2}=\frac{s}{\frac{s}{40}+\frac{s}{15}}=\frac{1}{\frac{1}{40}+\frac{1}{15}}\approx10,9\)(km/h)
Gọi nửa QĐ là S
vtb = 2s/(s/v1+s/v2) = 2/(1/12+1/20) = 15km/h
ta có:
thời gian người đó đi trên nửa quãng đường đầu là:
\(t_1=\frac{S_1}{v_1}=\frac{S}{2v_1}=\frac{S}{24}\)
thời gian người đó đi hết nửa đoạn quãng đường cuối là:
\(t_2=\frac{S_2}{v_2}=\frac{S}{2v_2}=\frac{S}{40}\)
vận tốc trung bình của người đó là:
\(v_{tb}=\frac{S}{t_1+t_2}=\frac{S}{\frac{S}{40}+\frac{S}{24}}=\frac{S}{S\left(\frac{1}{40}+\frac{1}{24}\right)}=\frac{1}{\frac{1}{24}+\frac{1}{40}}\)
\(\Rightarrow v_{tb}=15\) km/h
Gọi nửa QĐ là S
vtb=2s/(s/v1+s/v2)=2/(1/12+1/20)=15km/h