Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi độ dài quãng đường AB là x(km)(x>0)
độ dài quãng đường khác là x+15(km)
thời gian đi là: \(\frac{x}{30}\left(h\right)\)
thời gian về là:\(\frac{x+15}{40}\left(h\right)\)
theo đề bài: thời gian về ít hơn thời gian đi là 20 phút\(=\frac{1}{3}h\) nên ta có PT
\(\frac{x}{30}-\frac{x+15}{40}=\frac{1}{3}\)
\(\Leftrightarrow\frac{4x}{120}-\frac{3\left(x+15\right)}{120}=\frac{40}{120}\)
\(\Leftrightarrow4x-3x-45=40\)
\(\Leftrightarrow x=95\left(tmđk\right)\)
vậy đọ dài quãng đường AB là 95 km
Đổi: 20 phút = 1/3 h Gọi quãng đường AB là x (km) (x>0) Thời gian lúc đi là: x/30 (h) QĐ lúc về là: x + 15 (km) Thời gian lúc về là: (x + 15)/40 (h) Vì thời gian về ít hơn thời gian đi 20 phút nên ta có PT: x/30 - (x+15)/40 = 1/3 => ( x - 45)/120 = 1/3 => x - 45 = 40 => x = 85 (km) Vậy quãng đường AB dài 85 km
Gọi độ dài quãng đường lúc đi là x (km) với x>0
Độ dài quãng đường lúc về là: \(x+6\) (km)
Thời gian đi của người đó: \(\dfrac{x}{25}\) giờ
Thời gian về của người đó: \(\dfrac{x+6}{30}\) giờ
Do thời gian về ít hơn thời gian đi là \(10\) phút \(=\dfrac{1}{6}\) giờ nên ta có pt:
\(\dfrac{x}{25}-\dfrac{x+6}{30}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{x}{150}=\dfrac{11}{30}\)
\(\Leftrightarrow x=55\left(km\right)\)
S (km) | v (km/giờ) | t (giờ) | |
A→B | x | 25km/giờ | \(\dfrac{x}{25}\) |
Quãng đường khác | x+6 | 30km/giờ | \(\dfrac{x+6}{30}\) |
Theo đầu bài ta có phương trình:
\(\dfrac{x}{25}-\dfrac{x+6}{30}=\dfrac{1}{6}\)
\(\Leftrightarrow x=55\left(km\right)\)
Vậy quãng đường lúc đi là 55km
Gọi độ dài AB là x
Thời gian đi là x/30
Thời gian về là \(\dfrac{x+10}{25}\)
Theo đề, ta có: (x+10)/25-x/30=4/5
=>x/25-2/5-x/30=4/5
=>x/150=6/5
=>x=180
`->` gọi quãng đường `AB` là : `x(km;x>0)`
`-` quãng đường của xe máy lúc về là : `x+10(km)`
`-` thời gian của xe máy khi đi từ `A` đến `B` là : `x/30` (giờ)
`-` đổi `48` phút `=4/5` giờ
`=>` theo bài ra ta có được phương trình như sau :
`(x+10)/25-x/30=4/5`
`<=>6x -60+5x=120`
`<=>x=120-60`
`<=>x=60` (nhận)
Vậy quãng đường `AB` là `60km`
Gọi Quãng đường AB là x ( x > 0, km )
Quãng đường khi về là x + 10 km
Thời gian người đó đi quãng đường AB là \(\frac{x}{25}\)giờ
Thời gian người đó đi quãng đường khi về là \(\frac{x+10}{30}\)giờ
Do thời gian về ít hơn thời gian đi là 20 phút = 1/3 giờ
nên ta có phương trình \(\frac{x}{25}-\frac{x+10}{30}=\frac{1}{3}\Leftrightarrow x=100\)
Vậy Quãng đường AB là 100 km
Đổi: 30 phút = \(\dfrac{1}{2}\) (h)
Gọi quãng đường AB là x (km) (x>0)
Vận tốc lúc đi của người đi xe máy là 30 km/h
Thì thời gian lúc đi của người đi xe máy là \(\dfrac{x}{30}\) (h)
Vận tốc lúc về của người đi xe máy là 24 km/h
Thì thời gian lúc về của người đi xe máy là \(\dfrac{x}{24}\) (h)
Theo bài ra ta có pt:
\(\dfrac{x}{24}\) - \(\dfrac{x}{30}\) = \(\dfrac{1}{2}\)
⇔\(\dfrac{5x}{120}\) - \(\dfrac{4x}{120}\) = \(\dfrac{60}{120}\)
⇔ 5x - 4x = 60
⇔ x = 60 (TM)
Vậy quãng đường AB dài 60 km.
Gọi độ dài quãng đường AB là x
Theo đề,ta có phương trình:
\(\dfrac{x}{24}-\dfrac{x}{30}=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{1}{2}:\left(\dfrac{1}{24}-\dfrac{1}{30}\right)=60\)
Gọi quãng đường AB là x ( x > 0 )
Theo bài ra ta có pt \(\dfrac{30}{x}-\dfrac{36}{x+21}=\dfrac{15}{60}=\dfrac{1}{4}\Rightarrow x\approx32,5km\)