Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 là x;y;z
Ta có
a/7=b/6=c/5(1)
x/6=y/5=z/4(2)
Vì một công trường dự định phân chia số đất cho ba đội I,II,III tỉ lệ với 7;6;5 Nhưng sau đó vì số người ở các đội thay đổi nên đã chia lại tỉ lệ với 6;5;4. Nư vậy có một đội làm nhiều hơn so với dự định là 6 đất
=> (a+b+c) - ( x+y+z) = 6
Áp dụng tính chất của dãy tỉ số bằng nhau. Ta có
[(a+b+c) - ( x+y+z)] / (7+6+5)-(6+5+4)
=2
=> a=14
b=12
c= 10
P ơi tớ thấy trên mạng nè
Gọi 3 số đất đội lần 1 là a;b;c
2 là x;y;z
Ta có
\(\frac{a}{7}=\frac{b}{6}=\frac{c}{5}^{\left(1\right)}\)
\(\frac{x}{6}=\frac{y}{5}=\frac{z}{4}^{\left(2\right)}\)
Vì một công trường dự định phân chia số đất cho ba đội I,II,III tỉ lệ với 7;6;5 Nhưng sau đó vì số người ở các đội thay đổi nên đã chia lại tỉ lệ với 6;5;4. Nư vậy có một đội làm nhiều hơn so với dự định là 6 đất
=> (a+b+c) - ( x+y+z) = 6
Áp dụng tính chất của dãy tỉ số bằng nhau. Ta có
\(\frac{\left(a+b+c\right)-\left(x+y+x\right)}{\left(7+6+5\right)+\left(6+5+4\right)}=2\)
Suy ra: a=14
b=12
c= 10
Vậy ...
Gọi số tiền lợi nhuận mỗi nhà đầu tư nhận được là x, y, z ( triệu đồng) (x,y,z > 0)
Vì tổng lợi nhuận mà 3 nhà đầu tư nhận được là 72 triệu đồng nên x+y+z = 72
Vì số tiền lợi nhuận tỉ lệ với 2:3:4 nên \(\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{4} = \dfrac{{x + y + z}}{{2 + 3 + 4}} = \dfrac{{72}}{9} = 8\\ \Rightarrow x = 8.2 = 16\\y = 8.3 = 24\\z = 8.4 = 32\end{array}\)
Vậy 3 nhà đầu tư lần lượt nhận được 16 triệu đồng, 24 triệu đồng, 32 triệu đồng.
Gọi số đất phân chia theo dự định lầ a,b,c (m3;a,b,c > 0)
Gọi số đất phân chia theo thực tế là x,y,z (m3;x,y,z > 0)
Do số đất không đổi => a+b+c = x+y+z
Theo dự định, số đất được phân chia tỉ lệ với 7:6:5 nên ta có:
\(\dfrac{a}{7}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{a+b+c}{7+6+5}=\dfrac{a+b+c}{18}\)
=> \(\dfrac{a}{35}=\dfrac{b}{30}=\dfrac{c}{25}=\dfrac{a+b+c}{90}\) (1)
Theo thực tế, số đất được phân chia tỉ lệ với 6:5:4 nên ta có:
\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{z}{4}=\dfrac{x+y+z}{15}\)
=> \(\dfrac{x}{36}=\dfrac{y}{30}=\dfrac{z}{24}=\dfrac{x+y+z}{90}\) (2)
(1)(2) => \(\dfrac{a}{35}=\dfrac{b}{30}=\dfrac{c}{25}=\dfrac{x}{36}=\dfrac{y}{30}=\dfrac{z}{24}\)
=> \(\left\{{}\begin{matrix}a< x\\b=y\\c>z\end{matrix}\right.\)
=> Đội 1 là đội được chia nhiều hơn dự định 6m3
Có \(\dfrac{a}{35}=\dfrac{x}{36}=>a=\dfrac{35}{36}x\)
Có: \(x-a=6=>x-\dfrac{35}{36}x=6=>x=216\left(TM\right)\)
Có: \(\dfrac{x}{6}=\dfrac{x+y+z}{15}\) => x+y+z = 540
Vậy tổng số đất được phân là 540 m3
a)
- Lần chia thứ nhất ra làm+ 7+6+5=18 phần. Nên \(A=\frac{7}{18}a;B=\frac{6}{18}a;C=\frac{5}{18}a\)
- Lần chia thứ hai ra làm : 6+5+4 = 15 phần. Nên \(A^'=\frac{6}{15}a;B^'=\frac{5}{15}a;C^'=\frac{4}{15}a\)
- So sánh 2 lần chia ta thấy: \(A< A^'\left(\frac{7}{18}< \frac{6}{15}\right);B=B^'\left(\frac{6}{18}=\frac{5}{15}\right);C>C^'\left(\frac{5}{18}>\frac{4}{15}\right)\)
- Vậy A' tăng; B' không đổi; và C' giảm.
b)
- A' tăng và lượng tăng là: \(\frac{6}{15}a-\frac{7}{18}a=1200\Leftrightarrow\frac{36-35}{90}a=1200\Rightarrow a=90\cdot1200=108000\)
- \(A=\frac{7}{18}a=42000;B=\frac{6}{18}a=36000;C=\frac{5}{18}a=30000\)
- \(A^'=\frac{6}{15}a=43200;B^'=\frac{5}{15}a=36000;C^'=\frac{4}{15}a=28800\)