Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài và chiều rộng mảnh đất lần lượt là a và (m; a,b>0)
+ Mảnh đất có chu vi 70m
\(\Rightarrow2\left(a+b\right)=75\left(1\right)\)
+ Tăng chiều rộng 1m ,giảm chiều dài 5m thì diện tích mảnh đất giảm 60m2 so với ban đầu
\(\Rightarrow\left(a-5\right)\left(b+1\right)=ab-60\\ \Leftrightarrow ab+a-5b-5=ab-60\\ \Leftrightarrow a-5b=-55\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow hpt:\left\{{}\begin{matrix}2a+2b=70\\a-5b=-55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=15\end{matrix}\right.\left(TM\right)\)
Vậy chiều dài mảnh đất là 20(m) và chiều rộng mảnh đất là 15(m)
Nửa chu vi của mảnh đất là: 70:2=35(m)
Gọi chiều dài ban đầu của mảnh đất là a(m)(Điều kiện: \(0< a\le35\))
Chiều rộng ban đầu của mảnh đất là: 35-a(m)
Diện tích ban đầu của mảnh đất là: \(a\left(35-a\right)=35a-a^2\left(m^2\right)\)
Vì khi tăng chiều rộng thêm 1m và giảm chiều dài 5m thì diện tích giảm 60m2 so với ban đầu nên ta có phương trình:
\(\left(a-5\right)\left(35-a+1\right)=35a-a^2-60\)
\(\Leftrightarrow\left(a-5\right)\left(-a+36\right)=35a-a^2-60\)
\(\Leftrightarrow-a^2+36a+5a-180-35a+a^2+60=0\)
\(\Leftrightarrow6a-120=0\)
\(\Leftrightarrow6a=120\)
hay a=20(thỏa ĐK)
Chiều rộng ban đầu là: 35-20=15(m)
Vậy: Chiều dài và chiều rộng ban đầu là 20m và 15m
Gọi chiều rộng hcn là x>0, chiều dài hcn là y>0
Ta có chu vi hcn là 40\(\Rightarrow\left(x+y\right).2=40\Rightarrow x+y=20\Rightarrow y=20-x\)
Vì tăng chiều rộng thêm 2m ,giảm chiều dài 2m thì diện tích tăng 4 \(m^2\)nên
\(\left(x+2\right)\left(y-2\right)=xy+4\Rightarrow xy-2x+2y-4=xy+4\)
\(\Rightarrow x-y+4=0\Rightarrow x-\left(20-x\right)+4=0\Rightarrow2x=16\Rightarrow x=8\Rightarrow y=12\)
Vậy chiều rộng của hcn là 8m , chiều dài là 12m
Gọi x(m)>0 là chiều rộng hcn lúc đầu, suy ra:
- x+25 là chiều dài hcn lúc đầu
- x(x+25) là diện tích hcn lúc đầu
- x là chiều dài hcn lúc sau
- x2 là diện tích hcn lúc sau
Theo đề bài, ta có phương trình:
\(x\left(x+25\right)-x^2=1100\)
\(\Leftrightarrow x^2+25x-x^2=1100\)
\(\Leftrightarrow x=44\)
Vậy chiều rộng hcn lúc đầu là 44 (m); chiều rộng là 69 (m)
Nửa chu vi :
100 : 2 = 50 (m)
Gọi x (m) là chiều rộng lúc đầu của mảnh đất hình chữ nhật :
Chiều dài lúc đầu : 50 - x (m)
Chiều rộng lúc sau : x - 2 (m)
Chiều dài lúc sau : 50 - x + 5 = 55 - x (m)
Diện tích lúc đầu : x(50 - x) (m2)
Diện tích lúc sau : (x - 2)(55 - x) (m2)
Vì diện tích lúc sau tăng 30 m2 nên ta có pt :
(x - 2)(55 - x) - x(50 - x) = 30
\(\Leftrightarrow55x-x^2-110+2x-50x+x^2=30\)
\(\Leftrightarrow7x=140\)
\(\Leftrightarrow x=20\left(N\right)\)
Vậy : ...
Gọi chiều rộng mảnh đất lúc đầu là x (m), chiều dài là x + 5 (m), x > 0.
Diện tích mảnh đất ban đầu là x.(x+5) m2.
Chiều dài mảnh đất lúc sau là x + 5 + 3 = x+8 (m), chiều rộng mảnh đất lúc sau là x - 5 (m). Diện tích mảnh đất lúc sau là (x - 5)(x + 8) m2.
Theo bài ra ta có: x(x+5) - (x-5)(x+8) = 110.
Giải phương trình ta được: 5x -3x + 40 =110.
=> 2x = 70 => x= 35.
Vậy chiều rộng ban đầu là 35 m, chiều dài ban đầu là 40 m.
Gọi chiều rộng hcn là : x (x>0, m)
=> Chiều dài hcn là : 3x (m)
=> chiều rộng hcn sau khi tăng là : x+2 (m)
=> chiều dài hcn sau khi tăng là : 3x+2 (m)
Theo đề bài ta có pt :
(x+2)(3x+2)-x.3x=84
\(\Leftrightarrow3x^2+2x+6x+4-3x^2=84\)
\(\Leftrightarrow8x+4=84\)
\(\Leftrightarrow8x=80\)
\(\Leftrightarrow x=10\left(tm\right)\)
Vậy chiều rộng hcn là 10 (m)
=> chiều dài hcn là 3.10=30(m)
Vậy diệ tích mảnh vườn là : 10.30=300 \(\left(m^2\right)\)
k cho mk nhé :)
Nửa chu vi hình chữ nhật là: 46 : 2 = 23 (m)
Gọi chiều rộng của hcn ban đầu là a (m) (0 < a < 23) thì chiều dài ban đầu là 23 -a (m)
Theo bài ra, ta có:
\(a\left(23-a\right)+a^2=138\Leftrightarrow23a=138\Leftrightarrow a=6\) (thỏa mãn)
Vậy chiều rộng là 6 m và chiều dài là: 23 - 6 = 17 (m)
Diện tích hcn ban đầu là: \(17.6=102\left(m^2\right)\)
Nửa chu vi mảnh đất: 21m
Gọi chiều dài mảnh đất là x (với \(10,5< x< 21\))
Chiều rộng mảnh đất là: \(21-x\) (m)
Chiếu dài mảnh đất sau khi giảm 1m: \(x-1\)
Chiều rộng mảnh đất sau khi tăng 2m: \(21-x+2=23-x\)
Diện tích mảnh đất sau khi thay đổi kích thước:
\(\left(x-1\right)\left(23-x\right)\)
Ta có pt:
\(\left(x-1\right)\left(23-x\right)=121\)
\(\Leftrightarrow-x^2+24x-144=0\Rightarrow x=12\left(m\right)\)
Vậy mảnh đất ban đầu dài 12m, rộng 9m