Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Không gian mẫu là các tấm thẻ được đánh số nên nó gồm 15 phần tử, ký hiệu \(\Omega = \left\{ {1;2;3;...;15} \right\}\)
b) A là biến cố “Số ghi trên tấm thẻ nhỏ hơn 7” nên \(A = \left\{ {1;2;3;4;5;6} \right\}\)
B là biến cố “Số ghi trên tấm thẻ là số nguyên tố” nên \(B = \left\{ {2;3;5;7;11;13} \right\}\)
\(A \cup B = \left\{ {1;2;3;4;5;6;7;11;13} \right\}\)
\(AB = \left\{ {2;3;5} \right\}\)
a)
Biến cố AB: Số ghi trên thẻ được chọn chia hết cho cả 2 và 3.
b) Hai biến cố A và B không độc lập.
Điều này xảy ra vì nếu một số chia hết cho 2 thì nó có thể chia hết cho 3 (ví dụ: số 6), và ngược lại, nếu một số chia hết cho 3 thì nó cũng có thể chia hết cho 2 (ví dụ: số 6). => Do đó, kết quả của biến cố A ảnh hưởng đến biến cố B và ngược lại, không đảm bảo tính độc lập giữa hai biến cố này.
$HaNa$
A = {1; 2; 3; 4; 5; 6; 10; 12; 15; 20; 30; 60}
B = {1; 2; 3; 4; 6; 8; 12; 16; 24; 48}
\( \Rightarrow \) AB = {1; 2; 3; 4; 12}
Ta có \(P\left( A \right) = \frac{{12}}{{60}} = \frac{1}{5};P\left( B \right) = \frac{{10}}{{60}} = \frac{1}{6};P\left( {AB} \right) = \frac{5}{{60}} = \frac{1}{{12}}\)
Mặt khác \(P\left( A \right).P\left( B \right) = \frac{1}{5}.\frac{1}{6} = \frac{1}{{30}}\)
Vì \(P\left( {AB} \right) \ne P\left( A \right).P\left( B \right)\) nên hai biến cố A và B không độc lập.
a) Tập hợp mô tả biến cố AB:
`AB: { (1, 5), (2, 4), (3, 3) }`
P(AB) = số phần tử trong AB / số phần tử trong không gian mẫu
`P(AB) = 3 / (3 * 5) = 3/15 = 1/5`
b) Một biến cố khác rỗng và xung khắc với cả hai biến cố A và B là biến cố "Tổng các số ghi trên 2 thẻ lớn hơn 6".
$HaNa$
A = {10;12;14;16;18;20}
B = {8;9;10;11;12;13;14;15}
AB = {10;12;14}
Chọn C.
A = {10; 12; 14; 16; 18; 20}
B = {8; 9; 10; 11; 12; 13; 14; 15}
Vậy \(A \cup B\) = {8; 9; 10; 11; 12; 13; 14; 15; 16; 18; 20}
Đáp án A.
a. Không gian mẫu gồm 10 phần tử:
Ω = {1, 2, 3, …, 10}
b. A, B, C "là các biến cố".
+ A: "Lấy được thẻ màu đỏ"
⇒ A = {1, 2, 3, 4, 5}
+ B: "Lấy được thẻ màu trắng"
⇒ B = {7, 8, 9, 10}
+ C: "Lấy được thẻ ghi số chắn".
⇒ C = {2, 4, 6, 8, 10}
a) Không gian mẫu là tập hợp các số từ 1 đến 25, được ký hiệu là Ω = 1,2,3,…,25.
b) Biến cố P là tập hợp các số chia hết cho 4, được ký hiệu là P = {4,8,12,16,20,24}.
Biến cố Q là tập hợp các số chia hết cho 6, được ký hiệu là Q = {6,12,18,24}.
Biến cố S là giao của hai biến cố P và Q, nghĩa là các số vừa chia hết cho 4 và vừa chia hết cho 6, được ký hiệu là S = P ∩ Q = {12,24}.
Vậy P, Q và S lần lượt là các tập con của không gian mẫu Ω.
a: Ω={1;2;3;...;25}
n(Ω)=25
b: S=PQ là số ghi trên tấm thẻ vừa chia hết cho 4 vừa chia hết cho 6
P={4;8;12;16;20;24}
Q={6;12;18;24}
S={12;24}
Biến cố P,Q,S lần lượt là các tập hợp con của không gian mẫu