Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không gian mẫu \(\Omega\) chọn 3 thẻ từ 100 thẻ. \(n\left(\Omega\right)=C_{100}^3\).
Gọi \(x,y,z\) là ba số lấy ra được thỏa mãn.
Biến cố A là biến cố chọn được các số \(x,y,z\) đó.
Đặt \(A_k=\left\{\left(x,y,z\right)|x,y,z\in\left\{1,2,...,100\right\},1\le x< y< z=k,x+y>z\right\}\).
Khi đó \(n\left(A\right)=\left|A_1\right|+\left|A_2\right|+...+\left|A_{100}\right|\). Dễ thấy \(\left|A_1\right|=\left|A_2\right|=\left|A_3\right|=0\).
Ta sẽ tính các giá trị của \(\left|A_k\right|\).
TH1: \(k=2m\).
Xét \(1\le x\le m\). suy ra \(k=2m\ge2x\Leftrightarrow k-x\ge x\)
\(x+y>z\Rightarrow y>k-x\Rightarrow k-x+1\le y\le z-1\)
Số cách chọn \(y\) là \(\left(k-1\right)-\left(k-x+1\right)+1=x-1\) cách.
Xét \(x>m\): \(x+y>2x>2m=z\) (thỏa mãn bđt tam giác)
suy ra \(x+1\le y\le z-1=2m-1\).
Số cách chọn \(y\) là: \(\left(2m-1\right)-\left(x+1\right)+1=2m-x+1\) cách.
Tổng số cách là:
\(\sum\left|A_k\right|=\sum_{i=1}^m\left(i+1\right)+\sum_{i=m+1}^{2m-1}\left(2m-i+1\right)=\left(m-1\right)^2\) cách.
TH2: \(k=2m+1\).
Ta làm tương tự như trên, xét với \(1\le x\le m\) và \(x>m\).
Tổng số cách là: \(\sum\left|A_k\right|=\sum_{i=1}^m\left(i-1\right)+\sum_{i=m+1}^{2m}\left(2m-i\right)=m^2-m\) cách.
Vậy \(n\left(A\right)=\sum_{m=2}^{49}m\left(m-1\right)+\sum_{m=2}^{50}\left(m-1\right)^2=79625\) (cách).
\(P\left(A\right)=\dfrac{n\left(\Omega\right)}{n\left(A\right)}=\dfrac{65}{132}\).
Lời giải:
Trong các số từ 1 đến 30, có $\frac{30-3}{3}+1=10$ số chia hết cho $3$
Do đó, xác suất để chọn được chiếc thẻ chia hết cho $3$ là:
$\frac{10}{30}=\frac{1}{3}$
B, chắc chắn 1 trong 2 thẻ rút được là 0 hoặc 5 vì chia hết cho 5
Mà ta tính được 20 số chia hết cho 5
Ta tính được xắc xuất ra mỗi thẻ là 100÷20=5%
Iem mới lớp 6 sai mong anh TC
a)
A : "Hai thẻ rút được lập nên một số có hai chữ số"
P(A) = \(\frac{A_9^2}{A_{100}^2}\)= \(\frac{9.8}{100.99}\) ~ 0,0073
b/ B : "Hai thẻ rút được lập nên một số chia hết cho 5"
Số chia hết cho 5 tân cùng phải là 0 hoặc 5. Để có biến cố B thichs hợp với ta rút thẻ thứ hai một cách tùy ý trong 20 thẻ mang 5;10;15;20;...;95;100, và rút 1 trong 99 thẻ còn lại đặt vào vị trí đầu, Do số trường hợp thuận lợi cho 99,20
P(B) = \(\frac{99.20}{A^2_{100}}\)= 0,20
@minhnguvn
Có 6 cách chọn bi xanh.
Với mỗi cách chọn bi xanh có 6 cách chọn bi vàng để khác số.
Với mỗi cách chọn đó ta lại có 6 cách chọn bi đỏ để khác số với 2 quả vừa chọn.
Xác suất cần tìm là: \(\dfrac{6^3}{C_{21}^3}=\dfrac{108}{665}\).
Thực hiện xóa 2 số bất kì trên bảng rồi ghi lại 1 số tự nhiên bằng tổng 2 số vừa xóa. Tưởng tưởng mỗi lần xóa 2 số thì chúng ta sẽ thêm 2 số ban đầu vì thế các chữ số xuất hiện trên bảng không thay đổi chỉ thay đổi là giữa các số có thêm dấu cộng. Như vậy cứ làm đến bước cuối cùng thì số xuất hiện trên bảng sẽ là: 1 + 2 + 3 + 4 +...+ 2020 = ( 1 + 2020) 2020 : 2 = 2041210
Để tổng các số trên 3 quả bằng 5 thì: (2 quả số 1, 1 quả số 3) hoặc (1 quả số 1, 2 quả số 2)
\(\Rightarrow\) Xác suất: \(\dfrac{C_2^1.C_3^2}{C_2^1.C_3^2+C_2^2.C_4^1}=...\)