K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 1 2024

Không gian mẫu: \(C_{27}^3\)

Chọn 1 quả cầu xanh: có 8 cách

Chọn quả cầu đỏ khác số so với quả xanh: 8 cách

Chọn quả vàng khác số so với 2 quả đã chọn trước đó: 8 cách

\(\Rightarrow8.8.8\) cách chọn thỏa mãn

Xác suất: \(P=\dfrac{8.8.8}{C_{27}^3}=...\)

28 tháng 4 2018

b. Mỗi phần tử của không gian mẫu là một chỉnh hợp chập 2 của 7

vì vậy số phần tử của không gian mẫu là A72= 7.6=42

Chọn B

5 tháng 11 2021

Có \(C_{24}^3\) cách chọn 3 viên bất kì.

Có \(C_8^3+C_6^3+C_{10}^3\) cách họn 3 viên bi cùng màu.

Có 6 cách chọn 3 viên bi cùng số.

\(\Rightarrow\) Có \(C_{24}^3-\left(C_8^3+C_6^3+C_{10}^3\right)-6=1822\) cách chọn 3 viên bi khác màu, khác số.

NV
5 tháng 11 2021

Chọn 1 viên xanh: có 6 cách

Chọn 1 viên đỏ khác số viên xanh: 7 cách

Chọn 1 viên vàng khác số viên xanh và đỏ: 8 cách

Tổng cộng: \(6.7.8=336\) cách

16 tháng 6 2018

a. Mỗi viên bi đánh một số, nên 2 viên bi lấy ra mang số khác nhau. Vậy

Ω={(m,n)|1≤n≤7 và m≠n}

Chọn B

31 tháng 5 2018

Không gian mẫu là chọn ngẫu nhiên mỗi hộp 2 viên bi.

Suy ra số phần tử của không gian mẫu là .

Gọi A  là biến cố 4 viên bi được chọn luôn có bi đỏ nhưng không có bi xanh . Ta liệt kê các trường hợp thuận lợi của không gian biến cố A như sau:

 ●   Trường hợp 1. Chọn hộp thứ nhất 2 viên bi đỏ, có  cách.

 Chọn hộp thứ hai 2 viên bi từ 8 viên bi (2 đỏ và 6 vàng), có  cách.

Do đó trường hợp này có  cách.

●   Trường hợp 2. Chọn hộp thứ nhất 1 viên bi đỏ và 1 viên bi vàng, có  cách.

Chọn hộp thứ hai 2 viên bi từ 8 viên bi (2 đỏ và 6 vàng), có  cách.

Do đó trường hợp này có  cách.

●   Trường hợp 3. Chọn hộp thứ nhất 2 viên bi vàng, có  cách.

Chọn hộp thứ hai 2 viên bi đỏ hoặc 1 viên bi đỏ và 1 viên bi vàng, có  cách.

Do đó trường hợp này có  cách.

Suy ra số phần tử của biến cố A là

Vậy xác suất cần tính

Chọn B.

13 tháng 3 2017

Ba bi khác màu nên phải chọn từ mỗi hộp 1 viên bi.

Chọn từ hộp thứ ba 1 viên: có 4 cách chọn.

Chọn từ hộp thứ hai 1 viên có số khác với viên bi đã chọn từ hộp ba: có 4 cách chọn

Chọn từ hộp thứ nhất 1 viên bi có số khác với số của hai viên đã chọn từ hộp một và hai: có 4 cách chọn.

Vậy Ω A = 4 3 = 64 .

Đáp án B

4 tháng 10 2021

Theo mình nghĩ là chọn 4 viên bi cùng màu mà nhỉ

Tổng các cách chọn 4 bi đỏ, 4 bi xanh, 4 bi trắng, 4 bi vàng:

\(C_{10}^4+C_{25}^4+C_6^4+C_9^4=10977\) (cách)

4 tháng 3 2017

Không gian mẫu là số sách lấy tùy ý 2 viên từ hộp chứa 12 viên bi.

Suy ra số phần tử của không gian mẫu là .

Gọi A là biến cố 2 viên bi được lấy vừa khác màu vừa khác số .

●   Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi đỏ là 4.4=16 cách (do số bi đỏ ít hơn nên ta lấy trước, có 4 cách lấy bi đỏ. Tiếp tục lấy bi xanh nhưng không lấy viên trùng với số của bi đỏ nên có 4 cách lấy bi xanh).

●   Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi vàng là 3.4=12cách.

●   Số cách lấy 2 viên bi gồm: 1 bi đỏ và 1 bi vàng là 3.3=9 cách.

Suy ra số phần tử của biến cố A là 16+12+9=37.

Vậy xác suất cần tính .

Chọn B.

1 tháng 3 2021

undefined

Đây là nguồn : [LỜI GIẢI] Một hộp chứa 5 bi trắng, 6 bi đỏ  và 7 bi xanh, tất cả các bi có kích - Tự Học 365