K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Từ giả thiết ta có tiêu điểm \(F(5;0)\), suy ra \(\frac{p}{2} = 5\) hay \(p=10\).

Vậy phương trình chính tắc của parabol là: \({y^2} = 20x\)

Chiều sâu của gương là 45 cm tương ứng với \({x_A} = 45\), thay \({x_A} = 45\) vào phương trình \({y^2} = 20x\) ta có: \({y^2} = 20.45 = 900 \Rightarrow {y_A} = 30 \Rightarrow AB = 2{y_A} = 60 \)

Vậy khoảng cách AB là \(60 cm\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Có 7 trận: Tứ kết 1, Tứ kết 2, Tứ kết 3, Tứ kết 4, Bán kết 1, Bán kết 2, Chung kết.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Chiều cao là 4 m tương ứng với \(b = 4\)

Chiều rộng bằng 10 m nên \(2a = 10 \Rightarrow a = 5\)

Vậy phương trình chính tắc của elip có dạng \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{16} = 1\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Gọi phương trình chính tắc của parabol là: \({y^2} = 2px\left( {p > 0} \right)\)

Vì \(AB = 40cm\) và \(h = 30cm\) nên \(A\left( {30;20} \right)\)

Do \(A\left( {30;20} \right)\) thuộc parabol nên ta có: \({20^2} = 2p.30 \Rightarrow p = \frac{{20}}{3}\)

Vậy parabol có phương trình chính tắc là: \({y^2} = \frac{{40}}{3}x\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Kết quả của mỗi lần thử là một cặp (i; j) với và lần lượt là số chấm xuất hiện trên hai xúc xắc, hai con xúc xắc gieo đồng thời nên không quan tâm thứ tự, ta có không gian mẫu là:

\(\Omega  = \begin{array}{l}\{(1;1),(1;2),(1;3),(1;4),(1;5),(1;6),(2;2),(2;3),(2;4),(2;5),(2;6),(3;3),(3;4),(3;5),(3;6),\\(4;4),(4;5),(4;6),(5;5),(5;6),(6;6)\}\end{array} \)

Không gian mẫu gồm có 21 kết quả, tức là \(n\left( \Omega  \right) = 21\)

a) Ta có tập hợp miêu tả biến cố A

\(A = \left\{ {(1;1),(2;2),(3;3),(4;4),(5;5),(6;6)} \right\} \Rightarrow n\left( A \right) = 6\)

Do đó, xác suất của biến cố là:         \(P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{21}} = \frac{2}{7}\)

b) Ta có tập hợp miêu tả biến cố B

\(B = \left\{ {(6;3),(5;4)} \right\} \Rightarrow n\left( B \right) = 2\)

Do đó, xác suất của biến cố là:         \(P\left( B \right) = \frac{{n(B)}}{{n(\Omega )}} = \frac{2}{{21}}\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Gọi độ dài cạnh OB là cm \(\left( {x > 0} \right)\)

Theo giả thiết ta có \(AB = BC = OB - 1 = x - 1\)

Áp dụng định lý pitago trong tam giác vuông OAB  OBC ta có:

\(OC = \sqrt {O{B^2} + B{C^2}}  = \sqrt {{x^2} + {{\left( {x - 1} \right)}^2}}  = \sqrt {2{x^2} - 2x + 1} \)

\(OA = \sqrt {O{B^2} - A{B^2}}  = \sqrt {{x^2} - {{\left( {x - 1} \right)}^2}}  = \sqrt {2x - 1} \)

a) \(OC = 3OA \Rightarrow \sqrt {2{x^2} - 2x + 1}  = 3\sqrt {2x - 1} \)

\(\begin{array}{l} \Rightarrow 2{x^2} - 2x + 1 = 9\left( {2x - 1} \right)\\ \Rightarrow 2{x^2} - 20x + 10 = 0\end{array}\)

\( \Rightarrow \)\(x = 5 - 2\sqrt 5 \) và \(x = 5 + 2\sqrt 5 \)

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} - 2x + 1}  = 3\sqrt {2x - 1} \) ta thấy cả hai đều thỏa mãn phương trình

Vậy khi \(OB = 5 - 2\sqrt 5 \) hoặc \(OB = 5 + 2\sqrt 5 \)thì \(OC = 3OA\)

b) \(OC = \frac{5}{4}OB \Rightarrow \sqrt {2{x^2} - 2x + 1}  = \frac{5}{4}x\)

\(\begin{array}{l} \Rightarrow 2{x^2} - 2x + 1 = \frac{{25}}{{16}}{x^2}\\ \Rightarrow \frac{7}{{16}}{x^2} - 2x + 1 = 0\end{array}\)\(\)

\( \Rightarrow x = \frac{4}{7}\) hoặc \(x = 4\)                

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} - 2x + 1}  = \frac{5}{4}x\) ta thấy cả hai nghiệm đều thỏa mãn phương trình

Vậy khi \(OB = \frac{4}{7}\) hoặc \(OB = 4\) (cm) thì  \(OC = \frac{5}{4}OB\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Vì ABCD là hình bình hành nên ta có: \(\overrightarrow {AD}  = \overrightarrow {BC} \)\(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \) (đpcm)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Gọi vecto vận tốc của tàu là \(\overrightarrow {AB} \), vecto vận tốc của dòng nước là vecto \(\overrightarrow {BC} \)

Gọi vecto vận tốc của tàu là \(\overrightarrow {AB} \), vecto vận tốc của dòng nước là vecto \(\overrightarrow {BC} \)

Ta có vecto tổng là \(\overrightarrow F  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Độ dài vecto tổng là \(\left| {\overrightarrow F } \right| = \left| {\overrightarrow {AC} } \right| = AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{{30}^2} + {{10}^2}}  = 10\sqrt {10} \)(km/h)

Vậy độ dài vecto tổng là \(10\sqrt {10} \)(km/h).

Ta có vecto tổng là \(\overrightarrow F  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Độ dài vecto tổng là \(\left| {\overrightarrow F } \right| = \left| {\overrightarrow {AC} } \right| = AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{{30}^2} + {{10}^2}}  = 10\sqrt {10} \)(km/h)

Vậy độ dài vecto tổng là \(10\sqrt {10} \)(km/h).

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Có 6 cách chọn phương tiện đi từ Lào Cai đến Thành phố Hồ Chí Minh, qua Hà Nội.

Xe khách, Máy bay

Xe khách, Tàu hỏa

Xe khách, Xe khách

Tàu hỏa, Máy bay

Tàu hỏa, Tàu hỏa

Tàu hỏa, Xe khách