Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là hình vuông lớn nhất .
Theo đề bài ta có :
52 : x ; 36 : x (x là số lớn nhất )
\(\Rightarrow x\inƯCLN\left(52;36\right)\)
\(ƯCLN\left(52;36\right)=2^2=4\)
Vậy với cách chia có độ dài là 4 m là lớn nhất
Chúc bạn học tốt !!!
Bài giải
Gọi x là độ dài lớn nhất của cạnh hình (x \(\in\)N*)
Theo đề bài, có: 52 \(⋮\)x ; 36 \(⋮\)x và x lớn nhất
Suy ra x \(\in\)ƯCLN (52; 36)
52 = 22.13
36 = 22.32
ƯCLN (52; 36) = 22 = 4
Suy ra x = 4 (m)
Vậy độ dài lớn nhất của cạnh hình vuông là 4 m
Với cách chia là mỗi hình vuông có cạnh 4 m
Câu hỏi của Nguyễn Phương Thảo 2008 - Toán lớp 6 - Học toán với OnlineMath
Lời giải:
Để hình vuông là lớn nhất thì độ dài cạnh hình vuông là $ƯCLN(62,36)$
$\Rightarrow$ độ dài cạnh hình vuông là $2$ (m)
Vậy chia lô đất ra thành các hình vuông có độ dài cạnh $2$ m
Ta co canh lon nhat cua hinh vuong la: UCLN(48;36)=12.
Suy ra canh hinh vuong bang 12 m.
Bài làm:
Diện tích mảnh đất là: 48 . 36 = 1728 (m2)
Để độ dài cạnh hình vuông lớn nhất thì số đám đất nhỏ nhất.
Mà 1728 = 26 . 33
Khi chia ra các đám đất thì diện tích của nó sẽ là bình phương một số.
=> 1728 : 3 = 26 . 32
=> 576 = 26 . 32 = 82 . 32 = 242
Vậy phải chia mảnh đất thành 3 đám đất nhỏ, mỗi đám đất có chiều dài là 24m.
Diện tích hình vuông là;
54x48=2592 (cm)
ỨC(54;48)=(2:3:6)
Có thể chia ba cánh và cánh lớn nhất là
2592:2=1296(cm)
có ba cánh chia cho 2,3,6