K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

đèn đất bóng của đèn

4 tháng 2 2017

B A I 4m 3m

Áp dụng định lý pi-ta-go vào tam giác ABI ta có:

\(BI=\sqrt{AB^2+AI^2=}\sqrt{4^2+3^2}\)=5m

Vậy khoảng cách từ đỉnh cột đèn đến bóng của nó trên mặt đất là 5 m

23 tháng 10 2016

Áp dụng định lý Py-ta - go => kết quả =5m

23 tháng 10 2016

5m

27 tháng 10 2016

a. Gọi AB là cột điện, A là bóng đèn, A’ là ảnh của bóng đèn qua mặt nước (xem mặt nước như là gương phẳng), các tia tới bất kỳ AI, AK sẽ phản xạ theo hướng A’I và A’K đến mắt (M) của người quan sát

b. Gọi BC là bề rộng của hồ, H là điểm xa nhất mà khi người quan sát đứng tại đó thì mắt của người đó còn nhìn thấy ảnh A’

Nếu người quan sát đi ra ngoài khoảng CH thì mắt không còn nhìn thấy A’ của A qua hồ nữa.

Xét CBA đồng dạng với CHM

Ta có: = = CH = = 4m

Vậy khi người ấy rời xa hồ từ 4m trở đi sẽ không còn thấy ảnh của bóng đèn nữa.

14 tháng 2 2017

mk gặp cùng 1 câu này trên violympic mà sao có lúc ra đ/a là 4, có lúc lại là 12 z các bn

5m nhà bạn

sử dụng định lý pitago

14 tháng 2 2017

5m

4 tháng 9 2016

1m 6,75m 5m 0,8 m

4 tháng 9 2016

+ Vẽ cái cọc 1 cm, sau đó vẽ cái bóng 0,8 cm Sau đó vẽ tia sáng mặt trời qua đầu cọc và đỉnh cái bóng 
+ Từ cái đỉnh của cái bóng, lấy cái bóng của cái cột đèn dài 5cm về phía chân cái cọc => Xác định được vị trí của cột đèn. Sau đó từ chân cột đèn dựng thẳng đứng lên trên cắt tia sáng mặt trời tại đầu cột đèn. 
+ Lấy thước kẻ đo cái cột đèn => được chiều cao của nó

2 tháng 11 2016

Cột điện cao bao nhiêu vậy bạn?

1 tháng 10 2017

Đề còn thiếu bn ơi

11 tháng 7 2018


Ta biết các tia sáng của mặt trời chiếu song song, cái cọc và cột đèn đều vuông góc với mặt đất.

Ta chọn tỷ lệ xích 1cm ứng với 1m để vẽ và xác định chiều cao của cột đèn.

Bóng của cột đèn cao gấp 5: 0,8 = 6,25 lần so với bóng của cái cọc.

Vậy chiều cao của cột đèn cũng cao gấp 6,25 lần so với cọc.

Vậy chiều cao cột đèn h = 6,25m.

19 tháng 1 2017

3,2m 3,2m 1,6m 8m S I A B S' A' B' H

Khoảng cách từ hồ tới điểm không nhìn thấy ảnh của bóng đèn là BB'

Xét tam giác HBS' B'BA'

\(\widehat{S'HB}=\widehat{A'B'B}=90^0\)

\(\widehat{HBS'}=\widehat{A'BB'}\) ( 2 góc đối đỉnh )

\(\widehat{HS'B}=\widehat{BA'B'}\) ( 2 góc so le trong )

\(\Rightarrow\) tam giác HBS' đồng dạng tam giác B'BA'

\(\Rightarrow\frac{HB}{BB'}=\frac{HS'}{A'B'}=\frac{S'B}{A'B}\)

Xét \(\frac{HB}{BB'}=\frac{HS'}{A'B'}\)

Ta có \(\left\{\begin{matrix}HB=8m\\AB=A'B'=1,6m\\HS'=3,2m\end{matrix}\right.\)

\(\Rightarrow\frac{8m}{BB'}=\frac{3,2m}{1,6m}\)

\(\Rightarrow\frac{8m}{BB'}=2m\)

\(\Rightarrow BB'=4m\)

Vậy người đó phải lùi xa hồ 1 khoảng ít nhất là 4m để không thể nhìn thấy ảnh của bóng đèn

22 tháng 1 2017

Oh! Có lẽ hơi trễ nhưng dù sao cũng cảm ơn Nhật Minh nhá.hihi