K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta thấy hai hướng đông và tây là ngược nhau và tỉ số độ dài \(\frac{{\left| {\overrightarrow b } \right|}}{{\left| {\overrightarrow a } \right|}} = \frac{{50}}{{20}} = \frac{5}{2}\)

\( \Rightarrow \overrightarrow b  =  - \frac{5}{2}\overrightarrow a \)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Vecto \(\overrightarrow a ,\;\overrightarrow b \) là vecto vận tốc của máy bay A và máy bay b.

Do đó \(\left| {\overrightarrow a } \right|,\;\left| {\overrightarrow b } \right|\) lần lượt là độ lớn của vecto vận tốc tương ứng.

Ta có: \(\left| {\overrightarrow a } \right| = 600,\;\left| {\overrightarrow b } \right| = 800\)

\( \Rightarrow \frac{{\left| {\overrightarrow b } \right|}}{{\left| {\overrightarrow a } \right|}} = \frac{{800}}{{600}} = \frac{4}{3}\)

Hai hướng Đông Bắc và Tây Nam là ngược nhau, do đó \(\overrightarrow b  =  - \frac{4}{3}\overrightarrow a \)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Gọi vecto vận tốc của tàu là \(\overrightarrow {AB} \), vecto vận tốc của dòng nước là vecto \(\overrightarrow {BC} \)

Gọi vecto vận tốc của tàu là \(\overrightarrow {AB} \), vecto vận tốc của dòng nước là vecto \(\overrightarrow {BC} \)

Ta có vecto tổng là \(\overrightarrow F  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Độ dài vecto tổng là \(\left| {\overrightarrow F } \right| = \left| {\overrightarrow {AC} } \right| = AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{{30}^2} + {{10}^2}}  = 10\sqrt {10} \)(km/h)

Vậy độ dài vecto tổng là \(10\sqrt {10} \)(km/h).

Ta có vecto tổng là \(\overrightarrow F  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Độ dài vecto tổng là \(\left| {\overrightarrow F } \right| = \left| {\overrightarrow {AC} } \right| = AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{{30}^2} + {{10}^2}}  = 10\sqrt {10} \)(km/h)

Vậy độ dài vecto tổng là \(10\sqrt {10} \)(km/h).

21 tháng 8 2023

Sau 2 giờ, tàu thứ nhất đã đi được `25.2 = 50` hải lý.

Sau 2 giờ, tàu thứ hai đã đi được `20.2 = 40` hải lý.

Với a = `50` hải lý, b = `40` hải lý và `C = 180° - (15° + 32°) = 133°`, ta có:

`c^2 = 50^2 + 40^2 - 2.50.40.cos(133°)`

=> `c^2 ≈ 2500 + 1600 - 4000.(-0.6428) ≈ 4107.14`

Vậy, khoảng cách giữa hai tàu sau 2 giờ là:

`c ≈ √4107.14 ≈ 64,07 hải lý`

24 tháng 9 2023

Tham khảo:

Gọi B, C lần lượt là vị trí của tàu thứ nhất và tàu thứ hai sau 2,5 giờ.

Sau 2,5 giờ:

Quãng đường tàu thứ nhất đi được là: AB = 8.2,5 = 20 (hải lí)

Quãng đường tàu thứ hai đi được là: AC = 12.2,5 = 30 (hải lí)

Áp dụng định lí cosin trong tam giác ABC ta có:

\(B{C^2} = A{C^2} + A{B^2} - 2.AC.AB.\cos A\)

\(\begin{array}{l} \Rightarrow B{C^2} = {30^2} + {20^2} - 2.30.20.\cos {75^o}\\ \Rightarrow B{C^2} \approx 989,4\\ \Rightarrow BC \approx 31,5\end{array}\)

Vậy hai tàu cách nhau 31,5 hải lí.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Phương trình tham số của đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 40t\\y = 1 + 30t\end{array} \right.\)

b) Thay \(t = 2\) vào phương trình\(d:\left\{ \begin{array}{l}x = 1 + 40t\\y = 1 + 30t\end{array} \right.\)  ta được \(\left\{ \begin{array}{l}x = 1 + 40.2 = 81\\y = 1 + 30.2 = 61\end{array} \right.\)

Vậy khi \(t = 2\) thì tọa độ của ô tô là \(\left( {81;61} \right)\)

Thay \(t = 4\) vào phương trình\(d:\left\{ \begin{array}{l}x = 1 + 40t\\y = 1 + 30t\end{array} \right.\)  ta được \(\left\{ \begin{array}{l}x = 1 + 40.4 = 161\\y = 1 + 30.4 = 121\end{array} \right.\)

Vậy khi \(t = 4\) thì tọa độ của ô tô là \(\left( {161;121} \right)\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Ta có vectơ \(\overrightarrow {OM} \)  biểu diễn theo hai vectơ \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) là: \(\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right)\)

b) Do tọa độ hai điểm A và B là: \(A\left( {{x_A},{y_A}} \right),B\left( {{x_B},{y_B}} \right)\) nên ta có:\(\overrightarrow {OA}  = \left( {{x_A},{y_A}} \right),\overrightarrow {OB}  = \left( {{x_B},{y_B}} \right)\)

Vậy \(\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right) = \frac{1}{2}\left( {{x_A} + {x_B};{y_A} + {y_B}} \right) = \left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)

Tọa độ điểm M chính là tọa độ của vectơ nên tọa độ M  là \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Từ giả thiết ta có:

\(AF = FB = ED\); \(AE = EC = FD\); \(BD = DC = EF\)

Từ đó dựa vào hình ta có:

a) Các vectơ bằng vectơ \(\overrightarrow {EF} \)là \(\overrightarrow {DB} \) và \(\overrightarrow {CD} \)

b) Các vectơ đối vectơ \(\overrightarrow {EC} \) là \(\overrightarrow {EA} \) và \(\overrightarrow {DF} \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Gọi t (đơn vị: giờ) là thời gian đi cho đến khi hai tàu gặp nhau tại C.

Tàu B đi với vận tốc có độ lớn 30km/h nên quãng đường BC = 30t

Tàu A đi với vận tốc có độ lớn 50km/h nên quãng đường AC = 50t

Theo định lí sin, ta có: \(\frac{a}{{\sin \alpha }} = \frac{b}{{\sin B}}\)

Trong đó: \(\left\{ \begin{array}{l}a = BC = 30t\\b = AC = 50t\\\widehat B = {124^o}\end{array} \right.\)

\(\begin{array}{l} \Rightarrow \frac{{30t}}{{\sin \alpha }} = \frac{{50t}}{{\sin {{124}^o}}}\\ \Leftrightarrow \sin \alpha  = \frac{{30t.\sin {{124}^o}}}{{50t}} = \frac{{30.\sin {{124}^o}}}{{50}} \approx 0,4974\end{array}\)

\( \Leftrightarrow \alpha  \approx {30^o}\) hoặc \(\alpha  \approx {150^o}\)(loại)

Vậy tàu A chuyển động theo hướng tạo với vị trí ban đầu của tàu B góc \({30^o}\).

b) Xét tam giác ABC, ta có:

\(\begin{array}{l}\widehat B = {124^o};\widehat A = {30^o}\\ \Rightarrow \widehat C = {180^o} - \left( {\widehat B + \widehat A} \right) = {180^o} - \left( {{{124}^o} + {{30}^o}} \right) = {26^o}\end{array}\)

Theo định lí sin, ta có

\(\frac{a}{{\sin A}} = \frac{c}{{\sin C}} \Rightarrow a = \frac{{c.\sin A}}{{\sin C}}\)

Mà \(\left\{ \begin{array}{l}a = BC = 30t\\c = AB = 53\\\widehat A = {30^o};\widehat C = {26^o}\end{array} \right. \Rightarrow 30t = \frac{{53.\sin {{30}^o}}}{{\sin {{26}^o}}}\)

\(\begin{array}{l} \Leftrightarrow 30t \approx 60,45\\ \Leftrightarrow t \approx 2\;(h)\end{array}\)

Vậy sau khoảng 2 giờ thì tàu A đuổi kịp tàu B.

24 tháng 9 2023