K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2016

Biên độ: \(A=10cm\)

Tần số góc: \(\omega=10(rad/s)\)

Tại vị trí lò xo bị giãn \(5cm\) thì li độ của vật là: \(x=-10+5=-5cm\)

Vật đang đi lên là chuyển động theo chiều âm.

\(\Rightarrow \cos\varphi=-\dfrac{5}{10}=-0,5\)

\(\Rightarrow \varphi = \dfrac{2\pi}{3}\) (rad) (vì vật chuyển động theo chiều âm nên \(\varphi < 0\) )

PT dao động: \(x=10\cos(10t+\dfrac{2\pi}{3}) (cm)\)

5 tháng 9 2016

Ở VTCB lò xo giãn 10 cm, như vậy để nó giãn 5cm thì từ VTCB phải đi lên 5cm.

Chiều dương hướng xuống, nên li độ lúc đó phải bằng -5cm.

O -5cm -10cm Lò xo không biến dạng Lò xo giãn 5cm Lò xo giãn 10cm x

23 tháng 8 2016

Do \(\alpha_0=8^0\) nên đây là dao động điều hòa, ta tính toán giống như một dao động điều hòa thôi.

Tại vị trí \(W_đ=W_t\)

\(\Rightarrow W=W_đ+W_t=2W_đ\)

\(\Rightarrow v_{max}^2=2.v^2\)

\(\Rightarrow v=\dfrac{v_{max}}{\sqrt 2}=\dfrac{\omega.A}{\sqrt 2}\)

\(\Rightarrow v=\dfrac{\sqrt{\dfrac{g}{\ell}}.\alpha_0.\ell}{\sqrt 2}=\dfrac{\alpha_0.\sqrt{g.\ell}}{\sqrt 2}\)

\(\Rightarrow v=\dfrac{\dfrac{8.\pi}{180}.\sqrt{10.1}}{\sqrt 2}\approx0,31(m/s)\)

23 tháng 8 2016

Cảm ơn bạn

2 tháng 3 2017

Chu kì dao động của con lắc đơn 

Đáp án A

24 tháng 2 2019

Chọn B

+Khi có lực lạ gia tốc trọng trường biểu kiến 

Trong trường hợp cụ thể:

22 tháng 1 2019

Chu kì dao động: T = 2π/ω = 2π/5π = 0,4s

Thời điểm t = 0 và thời điểm độ lớn lực đàn hồi bằng 0,5N được biểu diễn trên đường tròn lượng giác:

Một chu kì có 4 lần độ lớn lực đàn hồi bằng 0,5N

Sau 504T độ lớn lực đàn hồi bằng 0,5N lần thứ 2016

=> Lực đàn hồi có độ lớn bằng 0,5N lần thứ 2018 vào thời điểm:

Đáp án C

8 tháng 5 2018

16 tháng 5 2019

Thời gian lò xo giãn trong một chu kì được biểu diễn trên đường tròn lượng giác:

Đáp án D

9 tháng 1 2019

Chọn đáp án A

@ Lời giải: