Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Bước 1: Biểu diễn diện tích x chiếc ghế và y chiếc bàn.
Diện tích của x chiếc ghế là \(0,5x\left( {{m^2}} \right)\) và y chiếc bàn là \(1,2y\left( {{m^2}} \right)\)
Bước 2: Biểu diễn diện tích lưu thông và cho lớn hơn hoặc bằng 12 \({m^2}\).
Tổng diện tích x chiếc ghế và y chiếc bàn là \(0,5x + 1,2y\left( {{m^2}} \right)\)
Diện tích lưu thông là \(60 - 0,5x - 1,2y\left( {{m^2}} \right)\)
Bất phương trình cần tìm là
\(\begin{array}{l}60 - 0,5x - 1,2y \ge 12\\ \Leftrightarrow 0,5x + 1,2y \le 48\end{array}\)
b)
+) Thay x=10, y=10 ta được
\(0,5.10 + 1,2.10 = 17 \le 48\)
=> (10;10) là nghiệm của bất phương trình
+) Thay x=10, y=20 ta được
\(0,5.10 + 1,2.20 = 29 \le 48\)
=> (10;20) là nghiệm của bất phương trình
+) Thay x=20, y=10 ta được
\(0,5.20 + 1,2.10 = 22 \le 48\)
=> (20;10) là nghiệm của bất phương trình
Chú ý
Ta có thể lấy các giá trị khác để thay vào, nếu thỏa mãn bất phương trình thì đó là nghiệm.
S A B C D H P A' B' C' D' P' H
Giả sử các cạnh bên của hình chóp cắt nhau tại S.
Họi H và H lần lượt là tâm đường trong ngoại tiếp các hình vuông ABCD và A'B'C'D'
Thì S, H, H' thẳng hàng và AH, SH' lần lượt là các đường cao của các hình chóp S.ABCD và S.A'B'C'D'
Gọi P là trung điểm của BC, P' là trung điểm của B'C'
Ta có SP và SP' là các trung đoạn của các hình chóp đều S.ABCD và S.A'B'C'D'
Xét tam giác SHP vuông tại H nên \(SP=\sqrt{SH^2+HP^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
Vì B'C' vuông góc với BC và B'C'=1/2B'C' là đường trung bình của tam giác SBC
Do đó : \(SH'=\frac{1}{2}SH=2cm;SP'=\frac{1}{2}SP=2,5cm\)
Thể tích hình chóp S.ABCD là
\(V_1=\frac{1}{3}SH.BC^2=\frac{1}{3}.4.6^2=48cm^3\)
Thể tích hình chóp S.A'B'C'D' là
\(V_2=\frac{1}{3}SH'.A'B'^2=\frac{1}{3}.2.3^2=48-6=42cm^3\)
Thể tích của hình chóp cụt là : \(V=V_1-V_2=48-6=42cm^3\)
Diện tích xung quanh của hình chóp cụt là :
\(S_{xq}=AB^2+A'B'^2+4\frac{PP'\left(AB+A'B'\right)}{2}=6^2+3^2+4\frac{2,5\left(6+3\right)}{2}=90cm^2\)
Gọi \(\overrightarrow{n}=\left(a,b\right)\) là vectơ pháp tuyến của CD (\(a^2+b^2\ne0\)
Ta có phương trình CD : \(ax+by+a+b=0\)
\(S_{BCD}=S_{ACD}=8\Rightarrow d\left(A;CD\right)=\frac{2.S}{CD}=2\Rightarrow d\left(M.CD\right)=1\)
\(\Rightarrow\frac{\left|2a-b\right|}{\sqrt{a^2+b^2}}=1\Leftrightarrow3a^2-4ab=0\)\(\rightarrow\begin{cases}a=0;b=1\\a=4;b=3\end{cases}\)\(\rightarrow\begin{cases}CD:y+1=0\\CD:4x+3y+7=0\end{cases}\)
Với \(CD:y+1=0\rightarrow D\left(d;-1\right);CD^2=4.AB^2=64\Leftrightarrow\begin{cases}d=7\\d=-9:L\end{cases}\)
\(D\left(7;-1\right);\overrightarrow{AB}=\frac{1}{2}\overrightarrow{DC}=\left(-4;0\right)\rightarrow B\left(-9;-3\right)\)
Với \(CD:4x+3y+7=0\rightarrow D\left(d;\frac{-4d-7}{3}\right)\rightarrow CD^2=\frac{25\left(d+1\right)^2}{9}=64\) (loại)
Đáy bé miếng bìa hình thang là:
36 x \(\frac{5}{6}\)= 30 (cm)
a) Diện tích miếng bìa là:
20 x ( \(\frac{36+30}{2}\)) = 660 (cm)
b) Tự làm
Hỏi ngu tí nha: hình thang có đáy lớn bằng đáy bé à ??? nếu thế thì còn gì là lớn và bé nữa.... không biết có phải hình bình hành hoặc là hình chữ nhật........
mình viết nhầm đó
một miếng bìa hình thang có đáy lớn 36 cm ,dáy bé bằng5/6đáy lớn, chiều cao 20cm
a) Tính diện tích miếng bìa
b)Hãy cắt miếng bìa thành 3 phần bằng nhau mà không cạnh nào của miếng bìa bị cắt(vẽ hình)
Chiều cao là:
(25-7):2=9 (cm)
Cạnh đáy là:
9+7=16 (cm)
diện tích hình bình hành là:
16x9=144 (cm2)
đ/s :
Lời giải:
Gọi bán kính đáy của hình trụ là $r$ thì chiều cao $h=4r$
Diện tích xung quanh: $S_{xq}=2\pi rh =2r.4r\pi = 8r^2\pi = 288\pi$
$\Rightarrow r^2=36\Rightarrow r=6$ (cm)