Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tam giác tại bởi phần thân cây bị gãy với phần cây còn lại và mặt đất là △ ABC vuông tại A. Ta có
cos 20 = 7.5 / cạnh huyền
⇒ cạnh huyền = \(\dfrac{7,5}{cos20}\)\(\approx\) 8 ( m )
Áp dụng định lý Py-ta-go ta có:
phần bị gãy của cây cau là : \(\sqrt{8^2-7,5^2}\) = 2.78 ( m )
⇒ Chiều cao cây cau lúc đầu là : 8 + 2.78 =10.78 ( m )
Là \(\tan35^0\cdot5,5+\dfrac{5,5}{\cos35^0}\approx10,57\left(m\right)=1057\left(cm\right)\left(C\right)\)
cây Hài Nam dài 4,5m
( Cho mình hỏi : cây Hài Nam là cây gì? )
Giả sử AB là độ cao của cây tre, C là điểm gãy.
Đặt AC = x (0 < x < 9) => CB = CD = 9 – x.
Vì ∆ ACD vuông tại A
Vậy điểm gãy cách gốc cây 4m
Đáp án cần chọn là: C
Giả sử AB là độ cao của cây tre, C là điểm gãy.
Đặt AC = x CB = CD = 8 – x.
Vì ∆ ACD vuông tại A
Vậy điểm gãy cách gốc cây 3,23m
Đáp án cần chọn là: B
Điểm gãy cách gốc \(\sqrt{8^2+3,5^2}=\dfrac{\sqrt{305}}{2}\approx8,73\left(m\right)\)