Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(ĐKXĐ:x\ge\frac{-1}{2}\)
\(\sqrt{x^2+4x+4}=2x+1\)
\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=2x+1\)
\(\Leftrightarrow x+2=2x+1\)
\(\Leftrightarrow-x=-1\)
\(\Leftrightarrow x=1\)
Vậy nghiệm duy nhất của phương trình là 1.
b)\(ĐKXĐ:x\ge3\)
\(\sqrt{4x^2-12x+9}=x-3\)
\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x-3\)
\(\Leftrightarrow2x-3=x-3\)
\(\Leftrightarrow2x=x\)
\(\Leftrightarrow x=0\)(không t/m đkxđ)
Vậy phương trình vô nghiệm
a) \(\sqrt{x+3}+\sqrt{x^2+9}\)
Ta thấy \(x^2\ge0\Rightarrow x^2+9\ge9\Rightarrow\sqrt{x^2+9}\ge3\)(luôn xác định)
Vậy để biểu thức xác định thì \(\sqrt{x+3}\)phải xác định
\(\Rightarrow x+3\ge0\Leftrightarrow x\ge-3\)
Vậy \(ĐKXĐ:x\ge-3\)
b) \(\sqrt{\frac{x-1}{x+2}}\)
Để biểu thức trên xác định thì x - 1 và x + 2 cùng dấu
\(TH1:\hept{\begin{cases}x-1>0\\x+2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>-2\end{cases}}\Rightarrow x>1\)
\(TH1:\hept{\begin{cases}x-1< 0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -2\end{cases}}\Rightarrow x< -2\)
Vậy \(ĐKXĐ:x>1;x< -2\)
\(a,|x+3|=3x-1\)
+) với:\(x\ge-3\Rightarrow x+3\ge0\Rightarrow|x+3|=x+3\)
\(\Rightarrow3x-1=x+3\Rightarrow3x=x+4\Rightarrow x=2\left(\text{ thỏa mãn}\right)\)
+) với: \(x< -3\Rightarrow x+3< 0\Rightarrow|x+3|=-3-x\)
\(\Rightarrow-3-x=3x-1\Rightarrow-x=3x+2\Rightarrow4x+2=0\Rightarrow x=-\frac{1}{2}\left(\text{loại}\right)\)
Vậy: x=2
1)\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+2x+1}\\ A=\left|x-1\right|+\left|x+1\right|\\ A=\left|1-x\right|+\left|x+1\right|\ge\left|1-x+x+1\right|=2\)
dấu "=" xảy ra khi \(\left[{}\begin{matrix}\left\{{}\begin{matrix}1-x\ge0\\x+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}1-x< 0\\x+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1\ge x\\x\ge-1\end{matrix}\right.\left(nhận\right)\\\left\{{}\begin{matrix}1< x\\x< -1\end{matrix}\right.\left(loại\right)\end{matrix}\right.\)
vậy....
\(B=\sqrt{4x^2-12x+9}+\sqrt{4x^2+12x+9}\\ B=\left|2x-3\right|+\left|2x+3\right|\\ B=\left|3-2x\right|+\left|2x+3\right|\ge\left|3-2x+2x+3\right|=6\)
dấu " = " xảy ra khi \(\left[{}\begin{matrix}\left\{{}\begin{matrix}3-2x\ge0\\2x+3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}3-2x< 0\\2x+3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3\ge2x\\2x\ge-3\end{matrix}\right.\\\left\{{}\begin{matrix}3< 2x\\2x< -3\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\dfrac{3}{2}\ge x\\x\ge-\dfrac{3}{2}\end{matrix}\right.\left(nhận\right)\\\left\{{}\begin{matrix}\dfrac{3}{2}< x\\x< -\dfrac{3}{2}\end{matrix}\right.\left(loại\right)\end{matrix}\right.\)
vậy....
2)
\(A=\sqrt{x+4}+\sqrt{4-x}\\ A^2=x+4+4-x+2\sqrt{\left(x+4\right)\left(4-x\right)}\\ A^2=4+2\sqrt{16-x^2}\\ vìx^2\ge0nên\\ A^2\le12\\ A\le\sqrt{12}\)
dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x^2\ge0\\x^2\le16\end{matrix}\right.\Rightarrow0\le x\le4\)
vậy...
\(B=\sqrt{x+6}+\sqrt{6-x}\\ B^2=x+6+6-x+2\sqrt{\left(x+6\right)\left(6-x\right)}\\ B^2=12+2\sqrt{36-x^2}\\ vì\: x^2\ge0nên\\ B^2\le24\\ B\le\sqrt{24}\)
dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x^2\ge0\\x^2\le36\end{matrix}\right.\Rightarrow0\le x\le6\)
bạn có cách nào làm cho x nó ra 1 số cụ thể ko ??