Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
\(\Leftrightarrow-4x^2+28x+4x^3-20x=28x^2-13\)
\(\Leftrightarrow-32x^2+8x+4x^3-13=0\)( vô nghiệm )
2, \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
\(\Leftrightarrow12x^3-7x^2-10x-7x^2-35x=-2x^2+11x-12+12x^3+2x^2\)
\(\Leftrightarrow12x^3-14x^2-45x=11x-12+12x^3\)
\(\Leftrightarrow-14x^2-56x-12=0\)( vô nghiệm )
Mình làm riêng ra nhá , chứ nhiều quá nên thông cảm cho mình :))
1. \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
=> \(-4x^2+28x+4x^3-20x=28x^2-13\)
=> \(-4x^2+4x^3+\left(28x-20x\right)=28x^2-13\)
=> \(-4x^2+4x^3+8x-28x^2+13=0\)
=> \(\left(-4x^2-28x^2\right)+4x^3+8x+13=0\)
=> \(-32x^2+4x^3+8x+13=0\)
=> vô nghiệm
2. \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
=> \(4x^2\left(3x+2\right)-5x\left(3x+2\right)-7x\left(x+5\right)=-4\left(-2x+3\right)+x\left(-2x+3\right)+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x=8x-12-2x^2+3x+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x-8x+12+2x^2-3x-12x^3-2x^2=0\)
=> \(\left(12x^3-12x^3\right)+\left(8x^2-15x^2-7x^2+2x^2-2x^2\right)+\left(-10x-35x-8x-3x\right)+12=0\)
=> \(-14x^2-56x+12=0\)
=> .... tự tìm
Câu c dấu bằng chỗ nào ?
1. (3x - 5)2 - (3x + 1)2 = 8
=> (3x - 5 - 3x - 1)(3x - 5 + 3x + 1) = 8
=> -6(6x - 4) = 8
=> 6x - 4 = \(\dfrac{-4}{3}\)
\(\Rightarrow x=\dfrac{4}{9}\)
2) 2x(8x - 3) - (4x - 3)2 = 27
=> 16x2 - 6x - 16x2 + 24x - 9 = 27
=> 18x - 9 = 27
=> x = 2
3) (2x - 3)2 - (2x + 1)2 = 3
=> (2x - 3 - 2x - 1)(2x - 3 + 2x +1) = 3
=> -4(4x - 2) = 3
=> 4x - 2 = \(\dfrac{-3}{4}\)
\(\Rightarrow x=\dfrac{5}{16}\)
4) (x + 5)2 - x2 = 45
=> (x + 5 - x)(x + 5 + x) = 45
=> 5(2x + 5) = 45
=> 2x + 5 = 9
=> x = 2
5) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 18
=> x3 - 9x2 + 27x - 27 - x3 + 27 + 9(x2 + 2x + 1) = 18
=> -9x2 + 27x + 9x2 + 18x + 9 = 18
=> 45x + 9 = 18
=> 45x = 9
=> x = \(\dfrac{1}{5}\)
6) x(x - 4)(x + 4) - (x - 5)(x2 + 5x + 25) = 13
=> x (x2 - 16) - (x3 - 125) = 13
=> x3 - 16x - x3 + 125 = 13
=> -16x = -112
=> x = 7.
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
1. \(x^2\left(x+1\right)+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x+1=0\Rightarrow x=-1\)
2. \(\left(x-2\right)\left(6x+2\right)+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right).7x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\7x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
3.
\(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
4.
\(x^2-x-6=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\)
\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
1,
a,\(2x\left(3x^2-5x+3\right)\)
\(=6x^3-10x^2+6x\)
b,\(-2x\left(x^2+5x-3\right)\)
\(=-2x^3-10x^2+6x\)
c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)
\(=-x^4+2x^2-\dfrac{3}{2}x\)
Bài 2:
a) \(\left(2x-1\right)\left(x^2-5-4\right)\)
\(=\left(2x-1\right)\left(x^2-9\right)\)
\(=2x^3-18x-x^2+9\)
b) \(-\left(5x-4\right)\left(2x+3\right)\)
\(=-\left(10x^2+15x-8x-12\right)\)
\(=-10x^2-7x+12\)
c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)
\(=8x^3-y^3\)
a) (x-1)(5x+3)=(3x-8)(x-1)
= (x-1)(5x+3)-(3x-8)(x-1)=0
=(x-1)[(5x+3)-(3x-8)]=0
=(x-1)(5x+3-3x+8)=0
=(x-1)(2x+11)=0
\(\Leftrightarrow\) x-1=0 hoặc 2x+11=0
\(\Leftrightarrow\) x=1 hoặc x=\(\dfrac{-11}{2}\)
Vậy S={1;\(\dfrac{-11}{2}\)}
b) 3x(25x+15)-35(5x+3)=0
=3x.5(5x+3)-35(5x+3)=0
=15x(5x+3)-35(5x+3)=0
=(5x+3)(15x-35)=0
\(\Leftrightarrow\) 5x+3=0 hoặc 15x-35=0
\(\Leftrightarrow\) x=\(\dfrac{-3}{5}\) hoặc x=\(\dfrac{7}{3}\)
Vậy S={\(\dfrac{-3}{5};\dfrac{7}{3}\)}
c) (2-3x)(x+11)=(3x-2)(2-5x)
=(2-3x)(x+11)-(3x-2)(2-5x)=0
=(3x-2)[(x+11)-(2-5x)]=0
=(3x-2)(x+11-2+5x)=0
=(3x-2)(6x+9)=0
\(\Leftrightarrow\) 3x-2=0 hoặc 6x+9=0
\(\Leftrightarrow\) x=\(\dfrac{2}{3}\) hoặc x=\(\dfrac{-3}{2}\)
Vậy S={\(\dfrac{2}{3};\dfrac{-3}{2}\)}
d) (2x2+1)(4x-3)=(2x2+1)(x-12)
=(2x2+1)(4x-3)-(2x2+1)(x-12)=0
=(2x2+1)[(4x-3)-(x-12)=0
=(2x2+1)(4x-3-x+12)=0
=(2x2+1)(3x+9)=0
\(\Leftrightarrow\)2x2+1=0 hoặc 3x+9=0
\(\Leftrightarrow\)x=\(\dfrac{1}{2}\)hoặc x=\(\dfrac{-1}{2}\) hoặc x=-3
Vậy S={\(\dfrac{1}{2};\dfrac{-1}{2};-3\)}
e) (2x-1)2+(2-x)(2x-1)=0
=(2x-1)[(2x-1)+(2-x)=0
=(2x-1)(2x-1+2-x)=0
=(2x-1)(x+1)=0
\(\Leftrightarrow\) 2x-1=0 hoặc x+1=0
\(\Leftrightarrow\) x=\(\dfrac{-1}{2}\) hoặc x=-1
Vậy S={\(\dfrac{-1}{2}\);-1}
f)(x+2)(3-4x)=x2+4x+4
=(x+2)(3-4x)=(x+2)2
=(x+2)(3-4x)-(x+2)2=0
=(x+2)[(3-4x)-(x+2)]=0
=(x+2)(3-4x-x-2)=0
=(x+2)(-5x+1)=0
\(\Leftrightarrow\) x+2=0 hoặc -5x+1=0
\(\Leftrightarrow\) x=-2 hoặc x=\(\dfrac{1}{5}\)
Vậy S={-2;\(\dfrac{1}{5}\)}
e sẽ cố gắng !!!
\(3x-15=2x\left(x-5\right)\)
\(3x-15=2x^2-10x\)
\(3x-15-2x^2+10x=0\)
\(13x-15-2x^2=0\)
\(x\left(13-2x\right)-15=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\13-2x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\-2-2x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\2x=-2\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
\(f,x\left(2x-7\right)-4x+14=0\)
\(2x^2-7x-4x+14=0\)
\(2x^2-11x+14=0\)
\(x\left(2x-11\right)=-14\)
\(\Rightarrow\orbr{\begin{cases}x=-14\\2x-11=-14\end{cases}\Rightarrow\orbr{\begin{cases}x=-14\\2x=-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=-14\\x=-\frac{3}{2}\end{cases}}}\)
\(3x^4-4x^3+2x\left(x^3-2x^2+7x\right)\)
\(=3x^4-4x^3+2x^4-4x^3+14x^2\)
\(=5x^4-8x^3+14x^2\)
3x4 - 4x3 + 2x(x3 - 2x2 + 7x )
= 3x4 - 4x3 + 2x4 _ 4x3 + 14x2
= 5x4 - 8x3 + 14x2
tách nhỏ câu hỏi ra
1. -3(-x+3)
= 3x - 6
2. -5x3 (-3x + 5)
= 15x4 - 25x3
3. -2x (-2x - 6)
= 4x2 + 12x