K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

3) Sửa ab+bc+ca/3 thành ab+bc+ca/2; Thêm đk: a;b;c > 0

Đặt \(A=\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\)

\(A=\dfrac{\dfrac{1}{a^2}}{a\left(b+c\right)}+\dfrac{\dfrac{1}{b^2}}{b\left(c+a\right)}+\dfrac{\dfrac{1}{c^2}}{c\left(a+b\right)}\)

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:

\(A\ge\dfrac{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}\)

\(A\ge\dfrac{\dfrac{\left(bc+ac+ab\right)^2}{abc^2}}{2\left(ab+bc+ca\right)}=\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}\)

Dấu "=" xảy ra khi a = b = c = 1

25 tháng 5 2017

còn phải làm bài nào ko hốt nốt

22 tháng 7 2021

-11/abc 

15 tháng 12 2016

ko đc đăng câu hỏi bằng hình ảnh

18 tháng 12 2016

Kệ Người ta nhiều chuyện

 

a: \(A=\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)

\(=\sqrt{5}-\sqrt{3-2\sqrt{5}+3}\)

\(=\sqrt{5}-\sqrt{5}+1=1\)

b: \(B=\sqrt{b-1}+\sqrt{b\left(b-1\right)}+\sqrt{b\left(b-1\right)}=\sqrt{b-1}\left(2\sqrt{b}+1\right)\)

19 tháng 10 2017

A = \(4\sqrt{20}+2\sqrt{45}-8\sqrt{5}+2\sqrt{180}\)

A = \(4.2\sqrt{5}+2.3\sqrt{5}-8\sqrt{5}+2.6\sqrt{5}\)

A = \(8\sqrt{5}+6\sqrt{5}-8\sqrt{5}+12\sqrt{5}\)

A = \(\left(8+6-8+12\right)\sqrt{5}\)

A = \(6\sqrt{5}\)

19 tháng 10 2017

\(A=4\sqrt{20}+2\sqrt{45}-8\sqrt{5}+2\sqrt{180}\)

\(=8\sqrt{5}+6\sqrt{5}-8\sqrt{5}+12\sqrt{5}\)

\(=18\sqrt{5}\)