K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NV
1
NV
0
NV
0
NV
0
NV
0
28 tháng 5 2022
a: \(A=\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
\(=\sqrt{5}-\sqrt{3-2\sqrt{5}+3}\)
\(=\sqrt{5}-\sqrt{5}+1=1\)
b: \(B=\sqrt{b-1}+\sqrt{b\left(b-1\right)}+\sqrt{b\left(b-1\right)}=\sqrt{b-1}\left(2\sqrt{b}+1\right)\)
TS
19 tháng 10 2017
A = \(4\sqrt{20}+2\sqrt{45}-8\sqrt{5}+2\sqrt{180}\)
A = \(4.2\sqrt{5}+2.3\sqrt{5}-8\sqrt{5}+2.6\sqrt{5}\)
A = \(8\sqrt{5}+6\sqrt{5}-8\sqrt{5}+12\sqrt{5}\)
A = \(\left(8+6-8+12\right)\sqrt{5}\)
A = \(6\sqrt{5}\)
3) Sửa ab+bc+ca/3 thành ab+bc+ca/2; Thêm đk: a;b;c > 0
Đặt \(A=\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\)
\(A=\dfrac{\dfrac{1}{a^2}}{a\left(b+c\right)}+\dfrac{\dfrac{1}{b^2}}{b\left(c+a\right)}+\dfrac{\dfrac{1}{c^2}}{c\left(a+b\right)}\)
Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:
\(A\ge\dfrac{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}\)
\(A\ge\dfrac{\dfrac{\left(bc+ac+ab\right)^2}{abc^2}}{2\left(ab+bc+ca\right)}=\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}\)
Dấu "=" xảy ra khi a = b = c = 1
còn phải làm bài nào ko hốt nốt