Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Đề câu a) có thêm \(n\inℤ\)
a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)
Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)
\(\Rightarrow n\left(n+1\right)+2⋮2\)
\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)
hay \(A⋮̸2\) ( đpcm )
b) Ta có : \(\left|2x-4\right|\ge0\forall x\)
\(\Rightarrow-\left|2x-4\right|\le0\forall x\)
\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)
hay \(A\le18\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)
Vậy max \(A=18\) khi \(x=2\)
b1 :
a,n^2 + n + 3
= n(n + 1) + 3
n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2
=> n(n+1) + 3 không chia hết cho 2
b, A = 18 - |2x - 4|
|2x - 4| > 0 => - |2x - 4| < 0
=> 18 - |2x - 4| < 18
=> A < 18
xét A = 18 khi |2x - 4| = 0
=> 2x - 4 = 0
=> x = 2
c, A = |5 - x| + 2015
|5 - x| > 0
=> |5 - x| + 2015 > 2015
=> A > 2015
xét A = 2015 khi |5 - x| = 0
=> 5 - x = 0 => x = 5
B2 :
Theo bài ra,ta có : \(x-1⋮x+6\)
\(\Rightarrow x+6-7⋮x+6\)
Mà \(x+6⋮x+6\)
\(\Rightarrow7⋮x+6\)
\(\Rightarrow x+6\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x\in\left\{-5;-7;1;-13\right\}\)để \(x-1⋮x+6\)
b) Theo bài ra, ta có : A nhỏ nhất
\(\Rightarrow\left|3a-1\right|\)nhỏ nhất
Mà \(\left|3a-1\right|\ge0\)
\(\Rightarrow\left|3a-1\right|=0\)
\(\Rightarrow A=0-5\)
\(\Rightarrow A=-5\)
Vậy A có GTNN là -5
Theo bài ra, ta có A nhỏ nhất :
=> | 3a - 1 | nhỏ nhất
Mà 3a - 1 > 0
=> | 3a - 1 | = 0
=> 3a - 1 = 0
=> 3a = 0 + 1
=> 3a = 1
=> a = 1 : 3
Mà 1 lại không chia hết cho 3
=> \(a\in\varnothing\)
Vậy ko tìm đc GTNN của A
b)Ta có \(17⋮\left(2a+3\right)\)
\(\Rightarrow\left(2a+3\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
Ta có bảng
2a+3 | -17 | -1 | 1 | 17 |
2a | -20 | -4 | -2 | 14 |
a | -10 | -2 | -1 | 7 |
Vậy...
Chúc bn học tốt!
#TM
a, \(M=\left(x-2\right)^2-22\)
Có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-22\ge-22\forall x\)
hay GTNN của M là -22
Dấu "=" xảy ra tại \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy GTNN của M là -22 tại x=2.
b, \(N=9-|x+3|\)
Có: \(|x+3|\ge0\forall x\)
\(\Rightarrow9-|x+3|\le9\forall x\)
hay GTLN của N là 9
Dấu "=" xảy ra tại \(|x+3|=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy GTLN của N là 9 tại x = -3.
\(\Rightarrow\)n - 6 \(⋮\)n - 4
\(\Rightarrow\left(n-6\right)-\left(n-4\right)⋮n-4\)
\(\Rightarrow n-6-n+4⋮n-4\)
\(\Rightarrow-2⋮n-4\)
\(\Rightarrow n-4\inƯ\left(-2\right)=\left(1;-1;2;-2\right)\)
ta có bảng sau ;
n - 4 1 -1 2 -2
n 5 3 6 2
KL x \(\in\)( 5;3;6;2)
a ( x - 2 ) x ( x + 15 ) = 0
suy ra 1 trong 2 số x - 2 và x + 15 có kết quả = 0
suy ra x - 2 = 0
x = 0 + 2
x = 2
suy ra x + 15 = 0
x = 0 - 15
x = 0 + ( -15 )
x = -15
KL x = 2 hoặc x = -15
1, A = |x+2| + 5
Vì \(\left|x+2\right|\ge0\forall x\Rightarrow A\ge5\)
Dấu "=" xảy ra khi | x+2| = 0 <=> x = 2 = 0 ,=> x = -2
Vậy \(A_{min}=5\Leftrightarrow x=-2\)
2. a + 10 chia hết cho a - 1
<=> a - 1 + 11 chia hết cho a - 1
<=> 11 chia hết cho a -1 ( a -1 thuộc Z )
\(\Leftrightarrow a-1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Bn tự lập bảng xét
a)A=|x+2|+5>=5
=>Min|x+2|+5=5
=> |x+2|=0
=>x+2=0
=> x=-2
b)a+10 là bội của a-1
=>a+10 chia hết a-1
Mà a-1 chia hết a-1
=>[(a+10)-(a-1)] chia hết a-1
=>a+10-a+1 chia hết a-1
=>11 chia hết a-1
=>a-1 thuộc Ư(11)
Kẻ bảng
a-1 | 1 | 11
a | 2 | 12
Vậy a = 2, 12
a) Ta có \(\left|1-x\right|\ge0\)
Dấu "=" xảy ra khi \(x=1\)và khi đó A đạt gấ trị nhỏ nhất
b) Ta có
\(x+5=x+3+2\)chia hết cho \(x+3\)\(\Rightarrow\)\(2\)chia hết cho \(x+3\)\(\Rightarrow\)\(\left(x+3\right)\inƯ\left(2\right)\)
\(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)
Do đó :
\(x+3=1\Rightarrow x=1-3=-2\)
\(x+3=-1\Rightarrow x=-1-3=-4\)
\(x+3=2\Rightarrow x=2-3=-1\)
\(x+3=-2\Rightarrow x=-2-3=-5\)
Vậy \(x=\left\{-2;-4;-1;-5\right\}\)
Chúc bạn học tốt