Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11 c)
\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) (luôn đúng)
12 a) Có a+b+c=1\(\Rightarrow\) (1-a)(1-b)(1-c)= (b+c)(a+c)(a+b) (*)
áp dụng BĐT cô-si: \(\left(b+c\right)\left(a+c\right)\left(a+b\right)\ge2\sqrt{bc}2\sqrt{ac}2\sqrt{ab}=8\sqrt{\left(abc\right)2}=8abc\) ( luôn đúng với mọi a,b,c ko âm )
b) áp dụng BĐT cô-si: \(c\left(a+b\right)\le\dfrac{\left(a+b+c\right)^2}{4}=\dfrac{1}{4}\)
Tương tự: \(a\left(b+c\right)\le\dfrac{1}{4};b\left(c+a\right)\le\dfrac{1}{4}\)
\(\Rightarrow abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{4}\dfrac{1}{4}\dfrac{1}{4}=\dfrac{1}{64}\)
hình như có 1 chút áp dụng toán 7 \(\sqrt{\left(y1-y2\right)^2+\left(x1-x2\right)^2}\) hay sao ấy
Mình chỉ giúp câu 15 thôi :) Bệnh lười ko cho phép mình check mấy câu trên hihi :D
Có \(\pi< \alpha< \frac{3}{2}\pi\Rightarrow\frac{\pi}{2}-\pi>\frac{\pi}{2}-\alpha>\frac{\pi}{2}-\frac{3}{2}\pi\)
\(\Leftrightarrow\frac{-1}{2}\pi>\frac{\pi}{2}-\alpha>-\pi\)
\(\Rightarrow\left(\frac{\pi}{2}-\alpha\right)\in\) góc phần tư thứ 3\(\Rightarrow\sin\left(\frac{\pi}{2}-\alpha\right)< 0\)
\(\pi< \alpha< \frac{3}{2}\pi\Rightarrow2\pi< \pi+\alpha< \frac{5}{2}\pi\)
\(\Rightarrow\left(\pi+\alpha\right)\in\) góc phần tư thứ nhất
\(\Rightarrow\cot\left(\alpha+\pi\right)>0\)
\(\Rightarrow M< 0\)
A = 1 / 50 + 1 / 51 +.....+ 1 / 98 + 1 / 99
Chứng tỏ rằng \(\frac{1}{2}\) < A < 1
mình học vnen nhưng ko có đề toán chỉ có để công dân de day nay về cuộc sống hòa bình và biển hiểu , quyền lợi
Với \(p=3\), ta có: \(3\) là số nguyên tố và \(p^2+44=3^2+44=53\) cũng là số nguyên tố.
Vậy \(p=3\) thỏa mãn.
* Với \(p\ne3\), vì p là số nguyên tố nên p không chia hết cho 3. Ta xét các trường hợp sau:
- Trường hợp 1: p chia 3 dư 1 => \(p=3k+1\left(k\in N\right)\)
Ta có:
\(p^2+44=\left(3k+1\right)^2+44=\left(3k+1\right).\left(3k+1\right)+44\)
\(=3k.\left(3k+1\right)+1.\left(3k+1\right)+44=9k^2+3k+3k+1+44\)
\(=9k^2+6k+45=3.\left(3k^2+2k+15\right)\) chia hết cho 3
Vậy trường hợp này loại
- Trường hợp 2: p chia 3 dư 2 => \(p=3k+2\left(k\in N\right)\)
Ta có:
\(p^2+44=\left(3k+2\right)^2+44=\left(3k+2\right).\left(3k+2\right)+44\)
\(=3k.\left(3k+2\right)+2.\left(3k+2\right)+44=9k^2+6k+6k+4+44\)
\(=9k^2+12k+48=3.\left(3k^2+4k+16\right)\) chia hết cho 3
Vậy trường hợp này loại
Tóm lại, chỉ có p = 3 là thỏa mãn đề bài.
* Với p = 3, ta có: 3 là số nguyên tố và p^2 + 44 = 3^2 + 44 = 53 cũng là số nguyên tố
Vậy p = 3 thỏa mãn
Với p \(\ne\) 3, vì p là số nguyên tố nên p không chia hết cho 3. Ta xét các trường hợp sau:
Trường hợp 1: p chia 3 dư 1 => \(p=3k+1\left(k\in N\right)\)
Ta có:
p^2 + 44 = (3k+1)^2 + 44 = (3k+1).(3k+1) + 44
= 3k.(3k+1) + 1.(3k+1) + 44 = 9k^2 +3k + 3k + 1 + 44
= 9k^2 + 6k + 45 = 3.(3k^2+2k+15) chia hết cho 3
Vậy trường hợp này loại
- Trường hợp 2: p chia 3 dư 2 => \(p=3k^2+2\left(k\in N\right)\)
Ta có:
p^2+44=(3k+2)2+44=(3k+2).(3k+2)+44
=3k.(3k+2)+2.(3k+2)+44=9k^2+6k+6k+4+44
=9k^2+12k+48=3.(3k^2+4k+16) chia hết cho 3
Vậy trường hợp này loại.
Tóm lại, chỉ có p=3 là thỏa mãn đề bài
Công thức toán học nằm hết trong phần khoanh đỏ, bạn vào đó tìm hiểu 1 lúc là được:
cảm ơn bn nha