K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2019

\(\left(1\right)\Leftrightarrow\left(x^2-2y\right)\left(x^2+y^2+2\right)=0\)

\(\Leftrightarrow y=\frac{x^2}{2}\)

Thê vô  (2) được

\(2x^2+\left(\frac{x^2}{2}\right)^2+x=14\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2+12x+28\right)=0\)

28 tháng 3 2019

cảm ơn alibaba =))

15 tháng 4 2018

x=4,y=6

15 tháng 4 2018

Mình cần cả cách trình bày nữa bạn

NV
7 tháng 6 2020

Ta có: \(x^2+\frac{1}{4}\ge x\Rightarrow x^2+y+\frac{3}{4}\ge x+y+\frac{1}{2}\)

Tương tự \(y^2+x+\frac{3}{4}\ge x+y+\frac{1}{2}\)

\(\Rightarrow\left(x^2+y+\frac{3}{4}\right)\left(y^2+x+\frac{3}{4}\right)\ge\left(x+y+\frac{1}{2}\right)^2\) (1)

Mặt khác: \(\left(2x+\frac{1}{2}\right)\left(2y+\frac{1}{2}\right)\le\frac{1}{4}\left(2x+2y+1\right)^2=\left(x+y+\frac{1}{2}\right)^2\) (2)

(1);(2) \(\Rightarrow\left(x^2+y+\frac{3}{4}\right)\left(y^2+x+\frac{3}{4}\right)\ge\left(2x+\frac{1}{2}\right)\left(2y+\frac{1}{2}\right)\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)

19 tháng 10 2021

tự làm đi