Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x2-6x+10
\(A=\left(x-3\right)^2+1>1\)
\(\Rightarrow A\) luôn dương
A = x2 - 6x + 10
= ( x2 - 6x + 9 ) + 1
= ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
B = x2 + x + 5
= ( x2 + x + 1/4 ) + 19/4
= ( x + 1/2 )2 + 19/4 ≥ 19/4 > 0 ∀ x ( đpcm )
C = 4x2 + 4x + 2
= 4( x2 + x + 1/4 ) + 1
= 4( x + 1/2 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
D = ( x - 3 )( x - 5 ) + 4
= x2 - 8x + 15 + 4
= ( x2 - 8x + 16 ) + 3
= ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
E = x2 - 2xy + 1 + y2
= ( x2 - 2xy + y2 ) + 1
= ( x - y )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )
Ta có : Q = x2 - 2xy -12x +y2 +12y + 36 + 5y2 -10y + 5 + 1976
= [ x2 -2x(y + 6 ) + ( y + 6 )2 ] + 5 (y2 -2y +1 ) +1976
= ( x- y - 6 )2 + 5 (y-1)2 + 1976
Vì ( x - y - 6)2 \(\ge\)0 với mọi x ; y ;5 .(y-1)2 \(\ge\)0 với mọi x ; y và 1976 > 0
Nên biểu thức Q luôn nhận giá trị dương với mọi x ;y
Q=x2+6y2−2xy−12x+2y+2017
Q=(x2-2xy+y2)-(12x-12y)+36+(5y2-10y+5)+1976
=(x-y)2-12(x-y)+36+5(y2-2y+1)+1976
=[(x-y)2-12(x-y)+36]+5(y-1)2+1976
=(x-y-6)2+5(y-1)2+1976
do (x-y-6)2 ≥ 0 ∀ x,y
(y-1)2 ≥ 0 ∀ y
=> (x-y-6)2+5(y-1)2+1976 ≥ 1976
=> Q≥ 1976
=> MinA=1976 khi
y-1=0
=>y=1
x-y-6=0
=>x-1-6=0
=>x-7=0
=>x=7
Vậy GTNN của Q =1976 khi x=7 và y=1
1/ Sửa đề a+b=1
\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
Thay a+b=1 vào M ta được:
\(M=1-3ab+3ab\left[1-2ab\right]+6a^2b^2\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)
2/ Đặt \(A=\frac{2n^2+7n-2}{2n-1}=\frac{\left(2n^2-n\right)+\left(8n-4\right)+2}{2n-1}=\frac{n\left(2n-1\right)+4\left(2n-1\right)+2}{2n-1}=n+4+\frac{2}{2n-1}\)
Để \(A\in Z\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng:
2n-1 | 1 | -1 | 2 | -2 |
n | 1 | 0 | 3/2 (loại) | -1/2 (loại) |
Vậy n={1;0}
Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)
Vậy \(x=y=\frac{1}{2}\)
\(1.\) Hổ báo !?
\(M=x^2+5y^2-2xy+6x-18y+50\)
\(=x^2-2xy+y^2+6x-6y+9+4y^2-12y+9+32\)
\(=\left(x-y\right)^2+6\left(x-y\right)+9+\left(2x-3\right)^2+32\)
\(M=\left(x-y+3\right)^2+\left(2x-3\right)^2+32\)
Mà \(\left(x-y+3\right)^2\ge0\) và \(\left(2x-3\right)^2\ge0\) với mọi \(x,y\) nên \(M\ge32>0\)
Vậy, biểu thức \(M\) luôn dương với mọi giá trị của \(x,y\)
Bài 2 không hổ báo lắm nên tự xử nha
2/ (x2 - 4).3 - (7x - 10).3 = (x2 - 7x + 6).3
=> (x2 - 4).3 - (7x - 10).3 - (x2 - 7x + 6).3 = 0
=> 3.(x2 - 4 - 7x + 10 - x2 + 7x - 6) = 0
=> 0x = 0
=> có vô số x thỏa phương trình trên
1/ đề bị sao ấy, giải không ra