\((\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x})(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2020

Ta có: \(A=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right).\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)    (   ĐK: \(x\ne0,\)\(x\ne9,\)\(x\ge3\))

     \(\Leftrightarrow A=\frac{\sqrt{x}.\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)

     \(\Leftrightarrow A=\frac{3\sqrt{x}-x+x+9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)

     \(\Leftrightarrow A=\frac{3\sqrt{x}-9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)

     \(\Leftrightarrow A=\frac{3\left(\sqrt{x}-3\right)}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)

     \(\Leftrightarrow A=\frac{3.\left(2\sqrt{x}+4\right)}{\left(9-x\right).\sqrt{x}}\)

     \(\Leftrightarrow A=\frac{6\sqrt{x}+12}{9\sqrt{x}-x}\)

30 tháng 10 2019

1. Trục căn thức ở mẫu:

\(A=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+....+\frac{1}{\sqrt{2001}+\sqrt{2005}}+\frac{1}{\sqrt{2005}+\sqrt{2009}}\)

=\(\frac{\sqrt{5}-1}{4}+\frac{\sqrt{9}-\sqrt{5}}{4}+\frac{\sqrt{13}-\sqrt{9}}{4}+....+\frac{\sqrt{2005}-\sqrt{2001}}{4}+\frac{\sqrt{2009}-\sqrt{2005}}{4}\)

\(=\frac{\sqrt{2009}-1}{4}\)

2/ \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)

=> \(x^3=\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^3\)

\(=3+2\sqrt{2}+3-2\sqrt{2}+3\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right).\sqrt[3]{3+2\sqrt{2}}.\sqrt[3]{3-2\sqrt{2}}\)

\(=6+3x\)

=> \(x^3-3x=6\)

=> \(B=x^3-3x+2000=6+2000=2006\)

30 tháng 10 2019

\(A=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+\frac{\sqrt{9}-\sqrt{13}}{9-13}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)

\(A=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)

\(A=\frac{1-\sqrt{2005}}{-4}=\frac{\sqrt{2005}-1}{4}\)

6 tháng 8 2020

Ta có: \(B=\frac{\sqrt{\frac{1}{9}}-3}{\sqrt{\frac{1}{9}}-1}\)

\(B=\frac{\frac{1}{3}-3}{\frac{1}{3}-1}\)

\(B=\frac{-\frac{8}{3}}{-\frac{2}{3}}=4\)

6 tháng 8 2020

đkxđ: \(\hept{\begin{cases}x\ne1\\x\ne25\end{cases}}\)

Ta có:  

\(A=\frac{x-21}{x-6\sqrt{x}+5}+\frac{1}{\sqrt{x}-1}+\frac{1}{5-\sqrt{x}}\)

\(A=\frac{x-21}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-5\right)}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}-5}\)

\(A=\frac{x-21+\sqrt{x}-5-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-5\right)}\)

\(A=\frac{x-25}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-5\right)}\)

\(A=\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-5\right)}\)

\(A=\frac{\sqrt{x}+5}{\sqrt{x}-1}\)

28 tháng 10 2016

Vậy cái điều kiện \(x\ne\sqrt{3}\)người ta cho chi bạn. Bạn nên để ý là cái điều kiện người ta cho là nhằm cho cái đó nó xác định chớ không cho tào lao đâu. x # 0 cũng là vì lý do đó nên mình chắc cái đề trong sách in sai

28 tháng 10 2016

Với điều kiện kèm theo thì mình chắc rằng cái đề phải là x - \(\sqrt{27}\) chứ không thể lad x - 27 được. Bạn xem lại đề nhé

19 tháng 7 2017

câu 2

\(...=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|=-4\)

câu 1

\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{3}{\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)

\(P< -1\Leftrightarrow\frac{-3\sqrt{x}}{2\sqrt{x}+4}+1< 0\Leftrightarrow-\sqrt{x}+4< 0\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)

13 tháng 8 2020

Bài làm:

đkxđ: \(x\ne4;x\ne9\)

Ta có: 

\(P=\frac{2\sqrt{x}}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(P=\frac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(P=\frac{2\sqrt{x}-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(P=\frac{2\sqrt{x}-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(P=\frac{x-\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

13 tháng 8 2020

\(ĐKXĐ:4< x< 9\)

\(P=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{\left(2\sqrt{x}-9\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

24 tháng 11 2021

\(\Leftrightarrow\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)\(-\)\(\frac{\sqrt{x}+3}{\sqrt{x}-2}\)\(+\)\(\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(\Leftrightarrow\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)\(-\)\(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)\(+\)\(\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow\frac{2\sqrt{x}-9-x+3\sqrt{x}-3\sqrt{x}+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow\frac{-\sqrt{x}+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

4 tháng 10 2020

\(A=\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}\div\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)

ĐKXĐ : x > 1

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\left(\frac{\sqrt{x}+1}{\sqrt{x}}+\frac{1}{\sqrt{x}-1}+\frac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\left(\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\times\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(=\frac{x}{\sqrt{x}-1}\)

Để A = 9/2

=> \(\frac{x}{\sqrt{x}-1}=\frac{9}{2}\)( ĐK : x > 1 )

<=> 2x = 9( √x - 1 )

<=> 2x = 9√x - 9

<=> 2x + 9 = 9√x (1)

Bình phương hai vế

(1) <=> 4x2 + 36x + 81 = 81x

     <=> 4x2 + 36x + 81 - 81x = 0

     <=> 4x2 - 45x + 81 = 0

     <=> 4x2 - 36x - 9x + 81 = 0

     <=> 4x( x - 9 ) - 9( x - 9 ) = 0

     <=> ( x - 9 )( 4x - 9 ) = 0

     <=> \(\orbr{\begin{cases}x-9=0\\4x-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x=\frac{9}{4}\end{cases}}\)( tm )