K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

Bài 1: ngại quá

Bài 2:a) Bình phương và pt \(\left( {x^2 - 8x + 7} \right)^2 = 0\)

b)Từ \(pt\left(2\right)\Leftrightarrow-\left(x-y-1\right)\left(x+y+2\right)=0\)

Bài 3: BĐT này k đẹp lắm, có mùi dài dòng cho qua nốt

22 tháng 10 2017

Sao you không trả lời luôn đi, giỏi thế còn gì

15 tháng 10 2020

Làm j có đề bài đâu mà lm

20 tháng 10 2017

Bài 3:

a)ĐK:...

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{x-4}+\sqrt{6-x}\right)^2\)

\(\le\left(1+1\right)\left(x-4+6-x\right)=4\)

\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)

Lại có: \(VP=x^2-10x+27=x^2-10x+25+2\)

\(=\left(x-5\right)^2+2\ge2\Rightarrow VP\ge2\)

Suy ra \(VT\le VP=2\Leftrightarrow VT=VP=2\)

\(\Rightarrow x^2-10x+27=2\Leftrightarrow\left(x-5\right)^2=0\Rightarrow x=5\)

b)Đặt \(\left\{{}\begin{matrix}a=\dfrac{1}{2x-y-3}\\b=4x+5y\end{matrix}\right.\) thì có:

\(\left\{{}\begin{matrix}4a+b=19\\3a-\dfrac{b-7}{20}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b=19-4a\\3a-\dfrac{19-4a-7}{20}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=19-4a\\16a-8=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=17\end{matrix}\right.\)

Hay \(\left\{{}\begin{matrix}\dfrac{1}{2x-y-3}=\dfrac{1}{2}\\4x+5y=17\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-y-3=2\\4x+5y=17\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

21 tháng 10 2017

Bài 5:

Áp dụng BĐT AM-GM ta có:

\(a\sqrt[3]{1+b-c}=a\sqrt[3]{a+2b}\le\dfrac{a\left(a+2b+1+1\right)}{3}\)\(=\dfrac{a^2+2ab+2a}{3}\)

Tương tự cho 2 BĐT còn lại cũng có:

\(b\sqrt[3]{1+c-a}\le\dfrac{b^2+2bc+2b}{3};c\sqrt[3]{1+a-b}\le\dfrac{c^2+2ac+2c}{3}\)

Cộng theo vế 3 BĐT trên ta có:

\(M\le\dfrac{a^2+b^2+c^2+2ab+2bc+2ca+2\left(a+b+c\right)}{3}\)

\(=\dfrac{\left(a+b+c\right)^2+2\left(a+b+c\right)}{3}=1\)

Xảy ra khi \(a=b=c=\dfrac{1}{3}\)

16 tháng 8 2017

Câu 2/

\(\sqrt[3]{x}+\sqrt[3]{y}=\sqrt[3]{1984}=4\sqrt[3]{31}\)

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x}=a\sqrt[3]{31}\\\sqrt[3]{y}=b\sqrt[3]{31}\end{matrix}\right.\left(a,b\in Z\right)\)

\(\Rightarrow a+b=4\)

Các bộ số nguyên a,b thỏa mãn cái này đều là nghiệm.

16 tháng 8 2017

sao mình ko thấy hại não nhỉ chắc não mịn quá rồi :v

Bài 1:

\(x^3-x^2-x+1=\sqrt{4x+3}+\sqrt{3x^2+10x+6}\)

\(pt\Leftrightarrow x^3-x^2-4x-2=\sqrt{4x+3}-\left(x+1\right)+\sqrt{3x^2+10x+6}-\left(2x+2\right)\)

\(\Leftrightarrow x^3-x^2-4x-2=\dfrac{4x+3-\left(x+1\right)^2}{\sqrt{4x+3}+x+1}+\dfrac{3x^2+10x+6-\left(2x+2\right)^2}{\sqrt{3x^2+10x+6}+2x+2}\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-2x-2\right)=\dfrac{-\left(x^2-2x-2\right)}{\sqrt{4x+3}+x+1}+\dfrac{-\left(x^2-2x-2\right)}{\sqrt{3x^2+10x+6}+2x+2}\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-2x-2\right)+\dfrac{x^2-2x-2}{\sqrt{4x+3}+x+1}+\dfrac{x^2-2x-2}{\sqrt{3x^2+10x+6}+2x+2}=0\)

\(\Leftrightarrow\left(x^2-2x-2\right)\left(\left(x+1\right)+\dfrac{1}{\sqrt{4x+3}+x+1}+\dfrac{1}{\sqrt{3x^2+10x+6}+2x+2}\right)=0\)

Dễ thấy: \(\left(x+1\right)+\dfrac{1}{\sqrt{4x+3}+x+1}+\dfrac{1}{\sqrt{3x^2+10x+6}+2x+2}>0\) (ơn trời dễ thấy thật :v)

\(\Rightarrow x^2-2x-2=0\Rightarrow x=\dfrac{2\pm\sqrt{12}}{2}\)

20 tháng 8 2017

kick đi

20 tháng 8 2017

k mik đi

bài nào

NM
29 tháng 8 2021

ta có 

\(A=B.\left|x-4\right|\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{1}{\sqrt{x}-5}.\left|x-4\right|\Leftrightarrow\sqrt{x}+2=\left|x-4\right|\)

Vậy :

\(\orbr{\begin{cases}\sqrt{x}+2=x-4\\\sqrt{x}+2=-x+4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-\sqrt{x}-6=0\\x+\sqrt{x}-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=3\\\sqrt{x}=1\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}x=9\\x=1\end{cases}}\)

29 tháng 8 2021

bạn cs chắc đây là đáp án đúng chứ