K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(2x-1\right)^2=49\)

<=>\(\left(2x-1\right)^2=7^2\)

<=>\(2x-1=7\)

<=>\(2x=8\)

<=>\(x=4\)

\(\left(5x-3\right)^2-\left(4x-7\right)^2=0\)

<=>\(\orbr{\begin{cases}5x-3=0\\4x-7=0\end{cases}}\)

<=>\(\orbr{\begin{cases}5x=3\\4x=7\end{cases}}\)

<=>\(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{7}{4}\end{cases}}\)

3 tháng 3 2020

\(\left(2x-1\right)^2=49\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=7\\2x-1=-7\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=8\\2x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=-3\end{cases}}}\)

Vậy x=4; x=-3

5 tháng 8 2016

3) \(\left(x-1\right)\left(x+1\right)^2-\left(2x-1\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)^2-\left(2x-1\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x-1-2x+1\right)=0\)

\(\Leftrightarrow-x\left(x+1\right)^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-x=0\\\left(x+1\right)^2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)

12 tháng 3 2020

Sử dụng phương pháp phân tích thành nhân tử

( có thể nhẩm nghiệm =casio rồi tách)

mk làm VD 1 cái 

mấy cái còn lại tương tự 

\(x^2-3x+2=x^2-x-2x+2=0\)

\(x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(x-2\right)=0\)

=> x=1 hoặc x=2

- Kudo -

12 tháng 3 2020

a) x2 - 3x + 2 = 0

<=> (x - 2)(x - 1) = 0

<=> x - 2 = 0 hoặc x - 1 = 0

<=> x = 2 hoặc x = 1

b) x2 + 5x + 6 =0 

<=> (x + 2)(x + 3) = 0

<=> x + 2 = 0 hoặc x + 3 = 0

<=> x = -2 hoặc x = -3

c) x2 - 4x + 3 = 0

<=> (x - 1)(x - 3) = 0

<=> x - 1 = 0 hoặc x - 3 = 0

<=> x = 1 hoặc x = 3

d) x2 + 2x - 3 = 0 

<=> (x - 1)(x + 3) = 0

<=> x - 1 = 0 hoặc x + 3 = 0

<=> x = 1 hoặc x = -3

e) x2 - 2x = 0

<=> x(x - 2) = 0

<=> x = 0 hoặc x - 2 = 0

<=> x = 0 hoặc x = 2

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

14 tháng 1 2018

Kết quả hình ảnh

a) \(\left(2x-1\right)^2=49\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=7\\2x-1=-7\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=8\\2x=-6\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)

14 tháng 1 2018

jup mk mấy câu kia vs

31 tháng 3 2020

\(a,\left(2x-1\right)^2=49\)

\(\left[{}\begin{matrix}2x-1=7\\2x-1=-7\end{matrix}\right.\)

\(\left[{}\begin{matrix}2x=8\\2x=-6\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

\(b,\left(2x+7\right)^2=9\left(x+2\right)^2\)

\(4x^2+28x+49=9x^2+36x+36\)

\(4x^2+28x+49-9x^2-36x-36=0\)

\(-5x^2-8x+13=0\)

\(5x^2+13-5x-13=0\)

\(x\left(5x+13\right)-1\left(5x+13\right)=0\)

\(\left(x-1\right)\left(5x+13\right)=0\)

\(\left[{}\begin{matrix}x=1\\5x=-13\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=1\\x=-\frac{13}{5}\end{matrix}\right.\)

31 tháng 3 2020

\(c,4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)

\(\left(4x+14\right)^2-\left(3x+9\right)^2=0\)

\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(x=-5\)

\(d,\left(5x-3\right)^2-\left(4x-7\right)^2=0\)

\(25x^2-30x+9-16x^2+56x-49=0\)

\(9x^2+26x-40=0\)

\(9x^2+36x-10x-40=0\)

\(9x\left(x+4\right)-10\left(x+4\right)=0\)

\(\left(9x-10\right)\left(x+4\right)=0\)

\(\left[{}\begin{matrix}9x-10=0\\x+4=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\frac{10}{9}\\x=-4\end{matrix}\right.\)

a) Ta có: \(x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{1;2\right\}\)

b) Ta có: \(-x^2+5x-6=0\)

\(\Leftrightarrow-\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow-\left(x^2-2x-3x+6\right)=0\)

\(\Leftrightarrow-\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)

\(\Leftrightarrow-\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)

\(\Leftrightarrow-\left[\left(x-2\right)\left(x-3\right)\right]=0\)

\(\Leftrightarrow-\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy: x∈{2;3}

c) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-10x-2x+5=0\)

⇔(4x2-10x)-(2x-5)=0

\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)

d) Ta có: \(2x^2+5x+3=0\)

\(\Leftrightarrow2x^2+2x+3x+3=0\)

\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)

\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{-1;\frac{-3}{2}\right\}\)

e) Ta có: \(x^3+2x^2-x-2=0\)

\(\Leftrightarrow\left(x^3+2x^2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=-1\end{matrix}\right.\)

Vậy: \(x\in\left\{-2;1;-1\right\}\)

g) Ta có: \(\left(3x-1\right)^2-5\left(2x+1\right)^2+\left(6x-3\right)\left(2x+1\right)=\left(x-1\right)^2\)

\(\Leftrightarrow9x^2-6x+1-20x^2-20x-5+12x^2-3-x^2+2x-1=0\)

\(\Leftrightarrow-24x-8=0\)

\(\Leftrightarrow-8\left(3x+1\right)=0\)

⇔3x+1=0

\(\Leftrightarrow3x=-1\)

\(\Leftrightarrow x=-\frac{1}{3}\)

Vậy: \(x=-\frac{1}{3}\)

22 tháng 1 2020

h) \(2x^3-7x^2+7x-2=0\)

\(\Leftrightarrow2x^3-4x^2-3x^2+6x+x-2=0\)

\(\Leftrightarrow2x^2\left(x-2\right)-3x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-2x-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[2x\left(x-1\right)-\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy S = {2; 1; \(\frac{1}{2}\)}

i) \(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)

\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\end{matrix}\right.\)

Vậy S = {1;-2}

22 tháng 2 2019

\(9x^2-1=\left(3x+1\right)\cdot\left(2x-3\right)\\ \Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\cdot\left(2x-3\right)=0 \\ \Leftrightarrow\left(3x+1\right)\left[\left(3x-1\right)-\left(2x-3\right)\right]=0\\\Leftrightarrow \left(3x+1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-2\end{matrix}\right.\\ \)

22 tháng 2 2019

1. \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=-2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{-1}{3};-2\right\}\)

2. \(\left(2x-1\right)^2=49\)

\(\Leftrightarrow\left(2x-1\right)^2-7^2=0\)

\(\Leftrightarrow\left(2x-1-7\right)\left(2x-1+7\right)=0\)

\(\Leftrightarrow\left(2x-8\right)\left(2x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-8=0\\2x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=8\\2x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{4;-3\right\}\)

3. \(\left(5x-3\right)^2-\left(4x-7\right)^2=0\)

\(\Leftrightarrow\left(5x-3-4x+7\right)\left(5x-3+4x-7\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(9x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\9x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{10}{9}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{-4;\dfrac{10}{9}\right\}\)

4. \(\left(2x+7\right)^2=9\left(x+2\right)^2\)

\(\Leftrightarrow4x^2+28x+49=9\left(x^2+4x+4\right)\)

\(\Leftrightarrow4x^2+28x+49=9x^2+36x+36\)

\(\Leftrightarrow\left(4x^2-9x^2\right)+\left(28x-36x\right)=36-49\)

\(\Leftrightarrow-5x^2-8x=-13\)

\(\Leftrightarrow-5x^2-8x+13=0\)

\(\Leftrightarrow-5x^2+5x-13x+13=0\)

\(\Leftrightarrow-5x\left(x-1\right)-13\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+13\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\5x+13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-13}{5}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{1;\dfrac{-13}{5}\right\}\)

8 tháng 3 2020

\(\text{a) (5x+2)(x-7)=0}\)

\(\Leftrightarrow\orbr{\begin{cases}5x+2=0\\x-7=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{5}\\x=7\end{cases}}\)

Vậy ...

#Thảo Vy#

8 tháng 3 2020

\(\text{b) (x^2-1)(x+3)=0}\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x+3\right)=0\)

\(\hept{\begin{cases}x+1=0\\x-1=0\\x+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\x=1\\x=-3\end{cases}}\)

Vậy...

3 tháng 2 2021

a) (5x - 1)(2x + 1) = (5x -1)(x + 3)

<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0

<=> (5x - 1)(2x + 1 - x - 3) = 0

<=> (5x - 1)(x - 2) = 0

<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)

Vậy x = 0,2 ; x = 2 là nghiệm phương trình

b) x3 - 5x2 - 3x + 15 = 0

<=> x2(x - 5) - 3(x - 5) = 0

<=> (x2 - 3)(x - 5) = 0

<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)

<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)

<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)

Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm

3 tháng 2 2021

c) (x - 3)2 - (5 - 2x)2 = 0

<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0

<=> (-x + 2)(3x - 8) = 0

<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)

Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)

d) x3 + 4x2 + 4x = 0

<=> x(x2 + 4x + 4) = 0

<=> x(x + 2)2 = 0

<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)