K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2023

`7,`

`a, B+A=4x-2x^2+3`

`-> B=(4x-2x^2+3)-A`

`-> B=(4x-2x^2+3)-(x^2-2x+1)`

`B=4x-2x^2+3-x^2+2x-1`

`B=(-2x^2-x^2)+(4x+2x)+(3-1)`

`B=-3x^2+6x+2`

`b, C-A=-x+7`

`-> C=(-x+7)+A`

`-> C=(-x+7)+(x^2-2x+1)`

`-> C=-x+7+x^2-2x+1`

`C=x^2+(-x-2x)+(7+1)`

`C=x^2-3x+8`

`c,`

`A-D=x^2-2`

`-> D= A- (x^2-2)`

`-> D=(x^2-2x+1)-(x^2-2)`

`D=x^2-2x+1-x^2+2`

`D=(x^2-x^2)-2x+(1+2)`

`D=-2x+3`

13 tháng 4 2023

`6,`

`a,`

`P+Q=4x-2x^2+3`

`-> Q=(4x-2x^2+3)-P`

`-> Q=(4x-2x^2+3)-(3x^2+x-1)`

`Q=4x-2x^2+3-3x^2-x+1`

`Q=(-2x^2-3x^2)+(4x-x)+(3+1)`

`Q=x^2+3x+4`

`b,`

`x^2-5x+2-P=H`

`-> H= (x^2-5x+2)-(3x^2+x-1)`

`H=x^2-5x+2-3x^2-x+1`

`H=(x^2-3x^2)+(-5x-x)+(2+1)`

`H=-4x^2-6x+3`

`c,`

`P-R=5x^2-3x-4`

`-> R= P- (5x^2-3x-4)`

`-> R=(3x^2+x-1)-(5x^2-3x-4)`

`R=3x^2+x-1-5x^2+3x+4`

`R=(3x^2-5x^2)+(x+3x)+(-1+4)`

`R=-2x^2+4x+3`

27 tháng 10 2019

Câu nào đấy ạ :)

28 tháng 2 2021

BÀI TOÁN ĐÂU EM :))

#\(N\)

`a,` Xét Tam giác `MPH` và Tam giác `MQH` có:

`MP = MQ (g``t)`

`MH` chung

\(\widehat{MHP}=\widehat{MHQ}=90^0\)

`=>` Tam giác `MPH =` Tam giác `MQH (ch - cgv)`

`=>`\(\widehat{MPH}=\widehat{MQH}\) `( 2` góc tương ứng `)`

`b,` Vì Tam giác `MPH =` Tam giác `MQH (a)`

`=>` \(\widehat{PMH}=\widehat{QMH}\) `( 2` góc tương ứng `)`

`=> MH` là tia phân giác của \(\widehat{PMQ}\) 

`c,` Ta có: \(\widehat{MPH}=\widehat{MQH}=50^0\) `(CMT)`

Xét Tam giác `MQH` có:

\(\widehat{MHQ}+\widehat{MQH}+\widehat{QMH}=180^0\) `(`đlí tổng `3` góc trong `1` tam giác `)`

\(90^0+50^0+\widehat{QMH}=180^0\)

`->`\(\widehat{QMH}=180^0-90^0-50^0=40^0\)

 

Bài 1:

Xét ΔBAK vuông tại A và ΔBHK vuông tại H có

BK chung

KA=KH

=>ΔBAK=ΔBHK

=>BA=BH

mà KA=KH

nên BK là trung trực của AH

=>BK vuông góc AH

23 tháng 10 2021

Ta có: \(3x=7y\)

\(\Rightarrow\frac{x}{7}=\frac{y}{3}=\frac{y-x}{3-7}=\frac{8}{-4}=-2\)

\(\Rightarrow\hept{\begin{cases}x=-14\\y=-6\end{cases}}\)

23 tháng 10 2021

\(\frac{x+2}{3}=\frac{y-1}{4}=\frac{z+3}{5}\)

\(=\frac{x+2-y+1+z+3}{3-4+5}\)

\(=\frac{x-y+z+6}{4}=\frac{66}{4}=16,5\)

\(\Rightarrow x,y,z=....\)

15 tháng 8 2021

\(B=\left|x+2\right|+\left|x-5\right|+\left|x-4\right|+\left|x-1\right|\)

 \(B=\left|x+2\right|+\left|-x+5\right|+\left|x-4\right|+\left|x-1\right|\)

Đặt a=|x+2|+|x-4|;b=|-x+5|+|x-1|

Ta có \(\left|x+2\right|\ge0;\left|x-4\right|\ge0với\forall x\)

\(\Rightarrow a=\left|x+2\right|+\left|x-4\right|\ge0với\forall x\left(1\right)\)

\(b=\left|-x+5\right|+\left|x-1\right|\ge-x+5+x-1=4với\forall x\left(2\right)\)

Từ (1) và (2)\(\Rightarrow B=a+b\ge4với\forall x\)

B đạt GTNN \(\Leftrightarrow\hept{\begin{cases}x+2\ge0\\x-4\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\le4\end{cases}\Leftrightarrow}-2\le x\le4}\)

\(D=\left|x-2\right|+\left|x-3\right|+\left|x+4\right|+\left|x+5\right|\)

   \(D=\left|-x+2\right|+\left|x-3\right|+\left|-x-4\right|+\left|x+5\right|\)

 Ta có

 \(\left|-x+2\right|+\left|x-3\right|\ge-x+2+x-3=1với\forall\left(1\right)\)

\(\left|-x-4\right|+\left|x+5\right|\ge-x-4+x+5=1với\forall x\left(2\right)\)

Từ(1)và(2)\(\Rightarrow D=\left|-x+2\right|+.....+\left|x+5\right|\ge2\)

D đạt GTNN 

13 tháng 10 2021

Bài 1 :

a ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{12}=\frac{y}{-8}=\frac{x+y}{12+\left(-8\right)}=\frac{-48}{4}=-12.\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{12}=-12\\\frac{y}{-8}=-12\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-144\\y=96\end{cases}}\)

b ) Từ \(x\):\(\left(-7\right)\)\(y\)\(10\)

\(\Rightarrow\)\(\frac{x}{-7}=\frac{y}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{-7}=\frac{y}{10}=\frac{y-x}{10-\left(-7\right)}=\frac{-34}{17}=-2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{-7}=-2\\\frac{y}{10}=-2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=14\\y=-20\end{cases}}\)

c ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{15}=\frac{y}{-12}=\frac{2x}{30}=\frac{y}{-12}=\frac{2x+y}{30+\left(-12\right)}=\frac{-360}{18}=-20\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=-20\\\frac{y}{-12}=-20\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-300\\y=240\end{cases}}\)

d ) Từ \(2x=-3y\)\(\Rightarrow\)\(\frac{x}{-3}=\frac{y}{2}\)

Áp dugj tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{-3}=\frac{y}{2}=\frac{x}{-3}=\frac{5y}{10}=\frac{x-5y}{-3-10}=\frac{-130}{-13}=10\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{-3}=10\\\frac{y}{2}=10\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-30\\y=20\end{cases}}\)

13 tháng 10 2021

Bài 2 :

a ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=\frac{x+y-z}{2+\left(-3\right)-5}=\frac{-54}{-6}=9.\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{-3}=9\\\frac{z}{5}=9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=18\\y=-27\\z=45\end{cases}}\)

b ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{-7}=\frac{z}{3}=\frac{x}{4}=\frac{2y}{-14}=\frac{z}{3}=\frac{x+2y-z}{4+\left(-14\right)-3}=\frac{-39}{-13}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=3\\\frac{y}{-7}=3\\\frac{z}{3}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=12\\y=-21\\z=9\end{cases}}\)