K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
20 tháng 8 2023
a: \(y=u^2=\left(sinx\right)^2\)
b: \(y'\left(x\right)=\left(sin^2x\right)'=2\cdot sinx\cdot cosx\)
\(y'\left(u\right)=\left(u^2\right)'=2\cdot u\)
\(u'\left(x\right)=\left(sinx\right)'=cosx\)
=>\(y'\left(x\right)=y'\left(u\right)\cdot u'\left(x\right)\)
QT
0
Lời giải:
Tìm đạo hàm theo biến $y$, bạn chỉ cần coi $x$ là một tham số rồi sử dụng công thức như bình thường thôi.
\(f(y)=y.e^{xy}.\sin y\)
\(\Rightarrow f'(y)=(y.e^{xy})'\sin y+y.e^{xy}(\sin y)'\)
\(=[y'.e^{xy}+y(e^{xy})']\sin y+y.e^{xy}.\cos y\)
\(=(e^{xy}+yxe^{xy})\sin y+y.e^{xy}\cos y\)
----------------------------------
Tính đạo hàm cấp 2.
Theo biến $x$
\(f(x)=e^{xy}\sin y\)
\(\Rightarrow f'(x)=\sin y(e^{xy})'=\sin y.ye^{xy}\)
\(\Rightarrow f''(x)=(y\sin y.e^{xy})'=y\sin y(e^{xy})'=y^2\sin y.e^{xy}\)
Theo biến $y$
\(f(y)=e^{xy}.\sin y\)
\(\Rightarrow f'(y)=(e^{xy})'\sin y+(\sin y)'e^{xy}\)
\(=x.e^{xy}\sin y+\cos y.e^{xy}\)
\(\Rightarrow f''(y)=(xe^{xy}.\sin y+\cos y.e^{xy})'\)
\(=(x.e^{xy}\sin y)'+(\cos y.e^{xy})'\)
\(=(x.e^{xy})'\sin y+(\sin y)'.xe^{xy}+(\cos y)'e^{xy}+\cos y(e^{xy})'\)
\(=x^2e^{xy}.\sin y+\cos y.x.e^{xy}-\sin y.e^{xy}+x\cos y.e^{xy}\)
dạ em cảm ơn! Thầy/Cô đã giúp em. em hiểu rồi ạ