K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

Bài 1:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2abxy+b^2y^2\)

\(\Leftrightarrow a^2y^2+b^2x^2-2abxy=0\)

\(\Leftrightarrow\left(ay-bx\right)^2=0\)

\(\Leftrightarrow ay=bx\)

\(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\)

\(\Rightarrowđpcm\)

Bài 2:

Ta có: \(VT=\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)

\(=\left(5a-3b\right)^2-64c^2\)

\(=25a^2-30ab+9b^2-64c^2\)

\(=25a^2-30ab+9b^2-16a^2+16b^2\left(a^2-b^2=4c^2\right)\)

\(=9a^2-30ab+25b^2=\left(3a-5b\right)^2=VP\)

\(\Rightarrowđpcm\)

12 tháng 9 2017

Bài 1

\(A=x^2+2xy+y^2-4x-4x+1\)

\(A=\left(x+y\right)^2-8x+1\)

\(\)Thay \(x+y=3\) vào biểu thức ta có :

\(A=3^2-8x+1\)

\(A=10-8x\)

Bài 2

\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)

\(=\left[\left(5a-3b\right)+8c\right]\left[\left(5a-3b\right)-8c\right]\)

\(=\left(5a-3b\right)^2-64c^2\)

\(=25a^2-30ab+9b^2-64c^2\)

\(=25a^2-30ab+9b^2-16\left(a^2-b^2\right)\)

\(=9a^2-30ab+25b^2\)

\(=\left(3a-5b\right)^2\)

Vậy đẳng thức đã được chứng minh .

3 tháng 12 2017

Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)

\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)

Vậy \(x=y=\frac{1}{2}\)

15 tháng 8 2020

Bài 1 : 

a) \(x^2+y^2\)

\(\Leftrightarrow x^2+2xy+y^2-2xy\)

\(\Leftrightarrow\left(x+y\right)^2-2xy=\left(-3\right)^2-2.\left(-28\right)=65\)

b) \(x^3+y^3\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)\)

\(\Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=\left(-3\right)\left[\left(-3\right)^2-3.\left(-28\right)\right]=-279\)

c) \(x^4+y^4\)

\(\Leftrightarrow\left(x+y\right)^4-4x^3y-4xy^3-6x^2y^2=\left(-3\right)^4-4\left(-28\right).65-6\left(-28\right)^2=2657\)

15 tháng 8 2020

Bài 3:

Có:    \(x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3\)

=>     \(x^3+y^3+z^3=\left(-z\right)^3-3xy.-z+z^3\)

=>     \(x^3+y^3+z^3=-z^3+z^3+3xyz=3xyz\)

=> TA CÓ ĐPCM.

VẬY      \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

18 tháng 10 2020

( 5a - 3b + 8c )( 5a - 3b - 8c ) 

= [ ( 5a - 3b ) + 8c ][ ( 5a - 3b ) - 8c ]

= ( 5a - 3b )2 - ( 8c )2

= 25a2 - 30ab + 9b2 - 64c2

= 25a2 - 30ab + 9b2 - 16.4c2

= 25a2 - 30ab + 9b2 - 16( a2 - b2 ) < vì a2 - b2 = 4c2 >

= 25a2 - 30ab + 9b2 - 16a2 + 16b2

= 9a2 - 30ab + 25b2

= ( 3a - 5b )2

=> đpcm

18 tháng 10 2020

\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)

\(VT=\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)

\(=\left(5a-3b\right)^2-\left(8c\right)^2\)

\(=25a^2-30ab+9b^2-64c^2\)

\(=25a^2-30ab+9b^2-16.4c^2\)

\(=25a^2-30ab+9b^2-16.\left(a^2-b^2\right)\)

\(=25a^2-30ab+9b^2-16a^2+16b^2\)

\(=9a^2-30ab+25b^2\)

\(=\left(3a-5b\right)^2\left(đpcm\right)\)