Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Những tỉnh thành phố có ca nhiễm hơn 2800 ca: Nghệ An, Bắc Ninh, Hưng Yên, Lạng Sơn, Quảng Ninh, Hà Nội.
b. Tỉnh có số ca nhiễm Covid 19 cao nhất là: Hà Nội
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$
a.
$x=180^0-80^0-45^0=55^0$
b.
$y=180^0-30^0-90^0=60^0$
c.
$z=180^0-30^0-25^0=125^0$
Ta có: góc aCd = góc CDb' (=60°)
Mà 2 góc này ở vị trí so le trong
=> aa' // bb'
Xét ∆ABC và ∆DBC có:
AB = BD
Góc ABC = góc CBD
Góc BAC = góc BDC
=> ∆ABC = ∆DBC
Em thấy bạn Vuông nói đúng
Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.
Ví dụ:
\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh
a.
\(A\in Z\Rightarrow2A\in Z\Rightarrow\dfrac{2\left(3x-2\right)}{2x-3}\in Z\)
\(\Rightarrow\dfrac{6x-4}{2x-3}\in Z\Rightarrow\dfrac{3\left(2x-3\right)+5}{2x-3}\in Z\)
\(\Rightarrow3+\dfrac{5}{2x-3}\in Z\Rightarrow\dfrac{5}{2x-3}\in Z\)
\(\Rightarrow2x-3=Ư\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x=\left\{-1;1;2;4\right\}\)
Thử lại thấy đều thỏa mãn
b.
\(\dfrac{2x+4}{y}-\dfrac{2}{x}-\dfrac{5}{xy}=1\)
\(\Rightarrow x\left(2x+4\right)-2y-5=xy\)
\(\Leftrightarrow2x^2+4x-y-5=xy\)
\(\Leftrightarrow2x^2+4x-5=y\left(x+1\right)\)
Với \(x=-1\) không thỏa mãn
Với \(x\ne-1\Rightarrow y=\dfrac{2x^2+4x-5}{x+1}\) (1)
Do \(y\in Z\Rightarrow\dfrac{2x^2+4x-5}{x+1}\in Z\Rightarrow\dfrac{2x^2+4x+2-7}{x+1}\in Z\)
\(\Rightarrow\dfrac{2\left(x+1\right)^2-7}{x+1}\in Z\Rightarrow2\left(x+1\right)-\dfrac{7}{x+1}\in Z\)
\(\Rightarrow\dfrac{7}{x+1}\in Z\) do \(2\left(x+1\right)\in Z\) với \(x\in Z\)
\(\Rightarrow x+1=Ư\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x=-8\left(loại\right)\\x=-2\left(loại\right)\\x=0\\x=6\end{matrix}\right.\)
Thế vào (1): \(\left[{}\begin{matrix}x=0\Rightarrow y=-5< 0\left(loại\right)\\x=6\Rightarrow y=13\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;13\right)\)