K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 7 2023

Lời giải:

$\frac{x-2y}{3z}$ có thể nhận giá trị lớn nhất nếu $x$ lớn nhất và $y,z$ nhỏ nhất có thể.

$x$ lớn nhất có thể nhận là $14$ (theo điều kiện)

$y,z$ nhỏ nhất có thể nhận là $1,2$ (do $y,z$ phân biệt)

Nếu $x=14, y=1,z=2$ thì $\frac{x-2y}{3z}=2$

Nếu $x=14; y=2, z=1$ thì $\frac{x-2y}{3z}=\frac{10}{3}>2$

Đáp án D.

15 tháng 10 2023

b) \(\sqrt{x^2}=\left|-8\right|\)

\(\Rightarrow\left|x\right|=8\)

\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

d) \(\sqrt{9x^2}=\left|-12\right|\)

\(\Rightarrow\sqrt{\left(3x\right)^2}=12\)

\(\Rightarrow\left|3x\right|=12\)

\(\Rightarrow\left[{}\begin{matrix}3x=12\\3x=-12\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{12}{3}\\x=-\dfrac{12}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

1
17 tháng 11 2023

ĐKXĐ: \(\left\{{}\begin{matrix}2x-3>=0\\x+1>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\x>=-1\end{matrix}\right.\)

=>\(x>=\dfrac{3}{2}\)

\(\sqrt{2x-3}-\sqrt{x+1}=x-4\)

=>\(\dfrac{2x-3-x-1}{\sqrt{2x-3}+\sqrt{x+1}}-\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(\dfrac{1}{\sqrt{2x-3}+\sqrt{x+1}}-1\right)=0\)

=>x-4=0

=>x=4(nhận)

NV
22 tháng 1 2024

Gọi số xe dự định tham gia chở hàng là x (xe) với x>4, x nguyên dương

Mỗi xe dự định chở khối lượng hàng là: \(\dfrac{20}{x}\) (tấn)

Số xe thực tế tham gia chở hàng là: \(x-4\) (xe)

Thực tế mỗi xe phải chở số hàng là: \(\dfrac{20}{x-4}\) (tấn)

Do thực tế mỗi xe phải chở nhiều hơn dự định là 5/6 tấn hàng nên ta có pt:

\(\dfrac{20}{x-4}-\dfrac{20}{x}=\dfrac{5}{6}\)

\(\Rightarrow24x-24\left(x-4\right)=x\left(x-4\right)\)

\(\Leftrightarrow x^2-4x-96=0\)

\(\Rightarrow\left[{}\begin{matrix}x=12\\x=-8\left(loại\right)\end{matrix}\right.\)

Vậy thực tế có \(12-4=8\) xe tham gia vận chuyển

1
15 tháng 12 2022

Mình không thấy câu nào cả thì giúp kiểu gì lỗi ảnh hay sao ý 

15 tháng 12 2022

1
NV
19 tháng 1 2024

ĐKXĐ: \(x+2y\ne0\)

\(\left\{{}\begin{matrix}x-\dfrac{1}{x+2y}=\dfrac{7}{4}\\-\dfrac{5}{2}x+2+\dfrac{4}{x+2y}=-2\end{matrix}\right.\)

Đặt \(\dfrac{1}{x+2y}=z\) ta được hệ:

\(\left\{{}\begin{matrix}x-z=\dfrac{7}{4}\\-\dfrac{5}{2}x+4z=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\z=\dfrac{1}{4}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\\dfrac{1}{x+2y}=\dfrac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\x+2y=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

22 tháng 7 2021

-11/abc 

19 tháng 8 2021

\(P=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x+\sqrt{x}}\)ĐK : x > 0 

\(=\left(\frac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\frac{1}{\sqrt{x}+1}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

19 tháng 8 2021

bạn bổ sung đk hộ mình ý 2 là : \(x\ge0;x\ne1\)nhé