\(a^3+b^3\) biết \(a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

Ta có: a+b=-5

<=>(a+b)2=25

<=>a2+2ab+b2=25

<=>a2+b2+12=25

<=>a2+b2=17

Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Thay a+b=-5,ab=6,a2+b2=17 vào biểu thức trên ta được:

\(-5\left(17-6\right)=-5.11=-55\)

2 tháng 7 2018

ta có

\(a+b=5\)

=>\(\left(a+b\right)^2=25\)

=>\(a^2+2ab+b^2=25\)

=>\(a^2+2.6+b^2=25\)

=>\(a^2+12+b^2=25\)

=>\(a^2+b^2=17\)

ta có

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

thay \(a+b=-5;ab=6;a^2+b^2=17\) vào bt trên ,ta có

\(-5\left(17-6\right)=-5.11=-55\)

vậy \(a^3+b^3=-55\)

13 tháng 7 2016

a) 6x^2-11x+3                              b)2x^2+3x-27                      c)3x^2-8x+4

= 6x^2-2x-9x+3                            =2x^2-6x+9x-27                    =3x^2-6x-2x+4

=2x(3x-1)-3(3x-1)                         =2x(x-3)+9(x-3)                      =3x(x-2)-2(x-2)

=(2x-3)(3x-1)                               =(2x+9)(x-3)                           =(3x-2)(x-2)      

21 tháng 7 2016

Bài 2 :

Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52

                          = 100a2 + 100a + 25

                          = 100a(a + 1) + 25.

Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;

Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được

(10a + 5)2 = 100a(a + 1) + 25

Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.

Áp dụng;

- Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.

- Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.

- 652 = 4225

- 752 = 5625.

 

21 tháng 7 2016

Bài 4 : 

a) 342 + 662 + 68 . 66 = 342 + 2 . 34 . 66 + 662 = (34 + 66)2 = 1002 = 10000.

b) 742 + 242 – 48 . 74 = 742 - 2 . 74 . 24 + 242 = (74 - 24)

 =502 =2500

 

20 tháng 4 2017

a) a3 + b3 = (a + b)3 – 3ab(a + b)

Thực hiện vế phải:

(a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2

= a3 + b3

Vậy a3 + b3 = (a + b)3 – 3ab(a + b)

b) a3 – b3 = (a – b)3 + 3ab(a – b)

Thực hiện vế phải:

(a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2

= a3 – b3

Vậy a3 – b3 = (a – b)3 + 3ab(a – b)

Áp dụng:

Với ab = 6, a + b = -5, ta được:

a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)

= -53 + 3 . 6 . 5 = -125 + 90 = -35.



27 tháng 6 2017

a) Ta có : a3 + b3 = (a + b)3 – 3ab(a + b)

=> VP = (a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2

= a3 + b3

Vậy a3 + b3 = (a + b)3 – 3ab(a + b)

b) a3 – b3 = (a – b)3 + 3ab(a – b)

=> VP = (a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2

= a3 – b3

Vậy a3 – b3 = (a – b)3 + 3ab(a – b)

Áp dụng:

Với ab = 6, a + b = -5, ta được:

a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)

= -53 + 3 . 6 . 5 = -125 + 90 = -35.


23 tháng 7 2020

a) \(\sqrt{12-3\sqrt{15}}\)

\(=\sqrt{\frac{3}{2}\left(8-2\sqrt{15}\right)}\)

\(=\sqrt{\frac{3}{2}\left(5-2.\sqrt{3}.\sqrt{5}+3\right)}\)

\(=\sqrt{\frac{3}{2}\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\frac{\sqrt{6}}{2}.\left|\sqrt{5}-\sqrt{3}\right|\)

\(=\frac{\sqrt{6}}{2}.\left(\sqrt{5}-\sqrt{3}\right)\) 

\(a,a^2+b^2\)

\(=\left(a+b\right)^2-2ab\)

Thay \(a+b=-5;a.b=6\) vào biểu thức ta được :

\(a,=\left(-5\right)^2-2.6\)

\(=25-12\)

\(=13\)

21 tháng 8 2020

a, \(a^2+b^2=a^2+2ab+b^2-2ab\)

\(=\left(a+b\right)^2-2ab=\left(-5\right)^2-2.6=25-12=13\)

b, \(a^3+b^3=\left(a+b\right)^3-3a^2b-3b^2a\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)=\left(-5\right)^3-3.6.\left(-5\right)\)

\(=-125-18.\left(-5\right)=-125+90=-35\)

20 tháng 4 2017

Bài giải:

a) (a + b)2 = (a – b)2 + 4ab

- Biến đổi vế trái:

(a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab

= (a – b)2 + 4ab

Vậy (a + b)2 = (a – b)2 + 4ab

- Hoặc biến đổi vế phải:

(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2

= (a + b)2

Vậy (a + b)2 = (a – b)2 + 4ab

b) (a – b)2 = (a + b)2 – 4ab

Biến đổi vế phải:

(a + b)2 – 4ab = a2 +2ab + b2 – 4ab

= a2 – 2ab + b2 = (a – b)2

Vậy (a – b)2 = (a + b)2 – 4ab

Áp dụng: Tính:

a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1

b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412

13 tháng 7 2017

CMR: (a + b)2 = (a - b)2 + 4ab

(a - b)2 = (a + b)2 - 4ab

Ta có: (a + b)2 = a2 + 2ab + b2

= a2 +2ab + b2 - 2ab +2ab

= a2 - 2ab + b2 + 2ab +2ab

= (a - b)2 +4ab

Ta có: (a - b)2 = a2 - 2ab + b2

= a2 - 2ab + b2 + 2ab - 2ab

= a2 + 2ab + b2 - 2ab - 2ab

= (a + b)2 - 4ab

Áp dụng:

a) Tính (a - b)2 , biết a + b = 7 và a.b = 12

Ta có: (a - b)2 = (a + b)2 - 4ab

= 72 - 4.12

= 49 - 48

Vậy (a - b)2 = 1

b) Tính (a + b)2 , biết a - b = 7 và a.b = 3

Ta có: (a + b)2 = (a - b)2 + 4ab

= 72 + 4.3

= 49 + 12

Vậy ( a + b)2 = 61