Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhờ người ta giải mà cười hihi
em thì bó tay chấm chữ com vào ăn
TXĐ: D=R
\(9^{x^2+x-1}-10.3^{x^2+x-2}+1=0\)
\(\Leftrightarrow9^{x^2+x-1}-10.\frac{3^{x^2+x-1}}{3}+1=0\)
Đặt t = \(3^{x^2+x-1}\) (t>0)
\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3^{x^2+x-1}=3\\3^{x^2+x-1}=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+x-1=1\\x^2+x-1=\frac{1}{3}\end{array}\right.\)
bạn tải về rồi zoom lên ý, vì đây là tớ chụp ảnh nên ảnh nhỏ
mong bạn tải về zoom lên hướng dẫn tớ với
\(2^{\sqrt{3x+2y-1}}+3^{\sqrt{2x-y-2}}=2\)
Ta có: \(\left\{{}\begin{matrix}\sqrt{3x+2y-1}\ge0\\\sqrt{2x-y-2}\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2^{\sqrt{3x+2y-1}}\ge1\\3^{\sqrt{2x-y-2}}\ge1\end{matrix}\right.\)
\(\Rightarrow2^{\sqrt{3x+2y-1}}+3^{\sqrt{2x-y-2}}\ge2\)
Dấu = xảy ra khi
\(\left\{{}\begin{matrix}3x+2y-1=0\\2x-y-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=-\dfrac{4}{7}\end{matrix}\right.\)
\(f\left(x\right)=x^3-6x^2+9x+m^2-5\)
\(f'\left(x\right)=3x^2-12x+9=3\left(x^2-4x+3\right)\)
\(f'\left(x\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\in\left[1,3\right]\\x=3\in\left[1,3\right]\end{cases}}\)
\(f\left(1\right)=m^2-1,f\left(3\right)=m^2-5\)
Suy ra \(minf\left(x\right)_{\left[1,3\right]}=min\left\{f\left(1\right),f\left(3\right)\right\}=f\left(3\right)=m^2-5\)
\(maxf\left(x\right)_{\left[1,3\right]}=max\left\{f\left(1\right),f\left(3\right)\right\}=f\left(1\right)=m^2-1\)
Để \(minf^2\left(x\right)_{\left[1,3\right]}=1\)thì \(\orbr{\begin{cases}m^2-5=1\\m^2-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=\pm\sqrt{6}\\m=0\end{cases}}\)
Chọn C.