K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2019

\(2^a3^b=\frac{4}{3}\Leftrightarrow2^a.3^{b+1}=4\Leftrightarrow\frac{2^a3^{b+1}}{2^2}=1\Leftrightarrow2^{a-2}3^{b+1}=1.\) 

vì 2 và ba nguyên tố cùng nhau nên  :    \(2^{a-2}.3^{b+1}=1\Leftrightarrow\hept{\begin{cases}a-2=0\\b+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=2\\b=-1\end{cases}.}}\)

HOẶC

\(\left(2^{a-2}.3^{b+1}=1\Leftrightarrow2^{a-2}.3^{b+1}=2^0.3^0\Rightarrow\hept{\begin{cases}a-2=0\\b+1=0\end{cases}\Rightarrow}\hept{\begin{cases}a=2\\b=-1\end{cases}}.\right)\)

14 tháng 5 2019

Cảm ơn bạn

13 tháng 5 2019

Giúp mình với ạ

20 tháng 9 2016

 \(f\left(a,b\right)=a^2+8b^2-6ab+14a-40b+48=3\)

\(\Leftrightarrow f\left(a,b\right)=a^2+8b^2-6ab+14a-40b+45=0\)

\(\Leftrightarrow a^2+2a\left(7-3b\right)+\left(8b^2-40b+45\right)=0\)

Xét \(\Delta'=\left(7-3b\right)^2-\left(8b^2-40b+45\right)=b^2-2b+4=\left(b-1\right)^2+3>0\)

Vậy PT luôn có hai nghiệm phân biệt.

Vì a,b nguyên nên \(b^2-2b+4=k^2\left(k\in N\right)\)

\(\Leftrightarrow k^2-\left(b-1\right)^2=3\Leftrightarrow\left(k-b+1\right)\left(k+b-1\right)=3\)

Xét các trường hợp với k-b+1 và k+b-1 là các số nguyên được : 

(b;k) = (0;2) ; (0;-2) ; (2;2) ; (2;-2)

Thay lần lượt các giá trị của b vào f(a,b) = 3 để tìm a.

Vậy : (a;b) = (-9;0) ; (-5;0) ; (-3;2) ; (1;2)

23 tháng 4 2017

Đề thi HK2 quận Bình Tân hả bạn? :))

14 tháng 5 2021

DEO AI BT DAU A.Zay nen tu lam nha.

13 tháng 9 2015

Nguyễn Ngọc Quý sai ròi :

a) \(\sqrt{\left(2+\sqrt{5}\right)^2}=l2+\sqrt{5}l=2+\sqrt{5}\)

\(\sqrt{\left(3-\sqrt{15}\right)^2}=l3-\sqrt{15}l=\sqrt{15}-3\)

13 tháng 9 2015

\(\sqrt{\left(2+\sqrt{5}\right)^2}=2+\sqrt{5}\)

\(\sqrt{\left(3-\sqrt{15}\right)^2}=3-\sqrt{15}\)