K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2021

7a) \(\Delta=\left(3m+1\right)^2-4\left(2m^2+m-1\right)=m^2+2m+5=\left(m+1\right)^2+4>0\)

\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt 

b) Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=3m+1\\x_1x_2=2m^2+m-1\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2-3x_1x_2=\left(x_1+x_2\right)^2-5x_1x_2=\left(3m+1\right)^2-5\left(2m^2+m-1\right)\)

\(=-m^2+m+6=-\left(m^2-m-6\right)\)

Ta có: \(m^2-m-6=m^2-2.m.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{25}{4}\)

\(=\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\Rightarrow-\left(m^2-m-6\right)\le\dfrac{25}{4}\)

\(\Rightarrow GTLN=\dfrac{25}{4}\) khi \(m=\dfrac{1}{2}\)

a) Ta có: \(x^2-\left(3m+1\right)x+2m^2+m-1\)

\(\Delta=\left(3m+1\right)^2-4\left(2m^2+m-1\right)\)

\(=9m^2+6m+1-8m^2-4m+4\)

\(=m^2+2m+5\)

\(=\left(m+1\right)^2+4>0\forall m\)

Do đó: Phương trình luôn có hai nghiệm phân biệt với mọi m

b) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=3m+1\\x_1x_2=2m^2+m-1\end{matrix}\right.\)

Ta có: \(B=x_1^2+x_2^2-3x_1x_2\)

\(=\left(x_1+x_2\right)^2-5x_1x_2\)

\(=\left(3m+1\right)^2-5\left(2m^2+m-1\right)\)

\(=9m^2+6m+1-10m^2-5m+5\)

\(=-m^2+m+6\)

\(=-\left(m^2-m-6\right)\)

\(=-\left(m^2-2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{25}{4}\)

\(=-\left(m-\dfrac{1}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall m\)

Dấu '=' xảy ra khi \(m=\dfrac{1}{2}\)

10 tháng 8 2021

1)\(\sqrt{27\left(1-\sqrt{3}\right)^2}\div3\sqrt{15}=\left(3\sqrt{3}\left|1-\sqrt{3}\right|\right)\div3\sqrt{15}=\left(9-3\sqrt{3}\right)\div3\sqrt{15}\)

\(=\frac{\sqrt{15}}{5}-\frac{\sqrt{5}}{5}=\frac{\sqrt{15}-\sqrt{5}}{5}\)

2) ĐK : a > 0

\(=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(a-\sqrt{a}+1\right)}=\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{a-\sqrt{a}+1}=a-1\)

3) \(\sqrt{15}-\sqrt{6}=\sqrt{3}\cdot\sqrt{5}-\sqrt{3}\cdot\sqrt{2}=\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)\)

22 tháng 7 2021

\(x+\sqrt{\left(x-1\right)^2}=x+\left|x-1\right|\)(1)

Với x < 1 (1) = x - ( x - 1 ) = x - x + 1 = 1

Với x >= 1 (1) = x + x - 1 = 2x - 1

19 tháng 6 2021

\(5,A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(A=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(A=\left|2x-1\right|+\left|2x-3\right|\)

\(A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|\)

\(A\ge2\)

\(< =>MIN:A=2\)dấu = xảy khi \(\frac{1}{2}\le x\le\frac{3}{2}\)

17 tháng 6 2021

Là thế lào

17 tháng 6 2021

Mọi người làm hết giúp mình với

28 tháng 6 2018

Đề đâu ạ  ,nếu là lớp 9 thì mh xin kiếu nhé !!!

( E có lớp 7 ak )

Tiện tay thì tk nhé , mơn nhìu !!!
~ HOK TỐT ~

15 tháng 4 2020

Mình có thấy gì đâu bạn?

3 tháng 7 2021

\(7:a,\sqrt{2-x}=3\)

\(\left|2-x\right|=3^2=9\)

\(\orbr{\begin{cases}2-x=9\\2-x=-9\end{cases}\orbr{\begin{cases}x=-7\left(KTM\right)\\x=11\left(TM\right)\end{cases}}}\)

\(b,\sqrt{4-4x+x^2}=3\)

\(\sqrt{\left(2-x\right)^2}=3\)

\(\left|2-x\right|=3\)

\(\orbr{\begin{cases}2-x=3\\2-x=-3\end{cases}\orbr{\begin{cases}x=-1\left(TM\right)\\x=5\left(TM\right)\end{cases}}}\)

\(c,\sqrt{4+x^2}+x=3\)

\(\sqrt{4+x^2}=3-x\)

\(4+x^2=\left(3-x\right)^2\)

\(4+x^2=9-6x+x^2\)

\(x=\frac{5}{6}\left(TM\right)\)

\(d,\frac{1}{2}\sqrt{16x-32}-2\sqrt{4x-8}+\sqrt{9x-18}=5\)

\(2\sqrt{x-2}-4\sqrt{x-2}+3\sqrt{x-2}=5\)

\(\sqrt{x-2}\left(2-4+3\right)=5\)

\(\sqrt{x-2}=5\)

\(\left|x-2\right|=25\)

\(\orbr{\begin{cases}x-2=25\\x-2=-25\end{cases}\orbr{\begin{cases}x=27\left(TM\right)\\x=-23\left(KTM\right)\end{cases}}}\)

3 tháng 7 2021

thank