K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2021

Bài 5 :

a, ĐKXĐ ; \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có : \(P=1:\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=1:\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)

\(=1:\left(\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)

\(=1:\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b, - Xét \(P-3=\dfrac{x+\sqrt{x}+1-3\sqrt{x}}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)

\(\Rightarrow P>3\)

 

4 tháng 7 2021

\(P=1:\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{x-1}\right)\) (Đk:\(x\ge0;x\ne1\))

\(=1:\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\)

\(=1:\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right]\)

\(=1:\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=1:\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=1:\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+1+\dfrac{1}{\sqrt{x}}\)

b) Áp dụng AM-GM có:

\(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{1}{\sqrt{x}}}=2\)

Dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{1}{\sqrt{x}}\Leftrightarrow x=1\left(ktm\right)\)

\(\Rightarrow\)Dấu "=" không xảy ra

\(\Rightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}>2\)\(\Rightarrow\sqrt{x}+1+\dfrac{1}{\sqrt{x}}>3\) 

hay P>3

Vậy...

19 tháng 6 2021

\(5,A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(A=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(A=\left|2x-1\right|+\left|2x-3\right|\)

\(A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|\)

\(A\ge2\)

\(< =>MIN:A=2\)dấu = xảy khi \(\frac{1}{2}\le x\le\frac{3}{2}\)

15 tháng 3 2020

cần cái gì

4 tháng 6 2021

idcm888dkk8cdw6ysgyxdbwdqjhqwuiowqqwudcgqofyhrli2uiy3yuyewiohewuwfwou

4 tháng 6 2021

xin lỗi, chưa học tới lớp 9

10 tháng 4 2020

đề đau bạn?????

10 tháng 4 2020

Cho tui xin cái đề thì tui ms giúp đc chứ !!!

3 tháng 7 2021

\(7:a,\sqrt{2-x}=3\)

\(\left|2-x\right|=3^2=9\)

\(\orbr{\begin{cases}2-x=9\\2-x=-9\end{cases}\orbr{\begin{cases}x=-7\left(KTM\right)\\x=11\left(TM\right)\end{cases}}}\)

\(b,\sqrt{4-4x+x^2}=3\)

\(\sqrt{\left(2-x\right)^2}=3\)

\(\left|2-x\right|=3\)

\(\orbr{\begin{cases}2-x=3\\2-x=-3\end{cases}\orbr{\begin{cases}x=-1\left(TM\right)\\x=5\left(TM\right)\end{cases}}}\)

\(c,\sqrt{4+x^2}+x=3\)

\(\sqrt{4+x^2}=3-x\)

\(4+x^2=\left(3-x\right)^2\)

\(4+x^2=9-6x+x^2\)

\(x=\frac{5}{6}\left(TM\right)\)

\(d,\frac{1}{2}\sqrt{16x-32}-2\sqrt{4x-8}+\sqrt{9x-18}=5\)

\(2\sqrt{x-2}-4\sqrt{x-2}+3\sqrt{x-2}=5\)

\(\sqrt{x-2}\left(2-4+3\right)=5\)

\(\sqrt{x-2}=5\)

\(\left|x-2\right|=25\)

\(\orbr{\begin{cases}x-2=25\\x-2=-25\end{cases}\orbr{\begin{cases}x=27\left(TM\right)\\x=-23\left(KTM\right)\end{cases}}}\)

3 tháng 7 2021

thank

NM
15 tháng 10 2021

bạn nhầm xíu rồi nhé undefined

16 tháng 10 2021

thôi chết mình viết nhầm nhé  kết quả của nguyễn minh quang giống kết quả của mình 

26 tháng 6 2021

14, \(\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\)

\(=\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{\left(\sqrt{x}+2\right)\left(5\sqrt{x}-1\right)}\)

\(=\frac{\left(-7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)+\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{-7x-14\sqrt{x}+7\sqrt{x}+14+10x-2\sqrt{x}-10\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3x+20\sqrt{x}+28}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\left(3\sqrt{x}+14\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}+14}{5\sqrt{x}-1}\)

27 tháng 6 2021

thank