Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1. Tổ công tác gồm 2 nam và 3 nữ có số cách chọn \(C^2_{12}.C^3_{18}\)
TH2. Tổ công tác gồm 1 nam và 4 nữ có số cách chọn \(C^1_{12}.C^4_{18}\)
TH3. Tổ công tác chỉ gồm 5 nữ có số cách chọn \(C^5_{18}\)
Tổng số cách là: \(C^2_{12}.C^3_{18}\)+ \(C^1_{12}.C^4_{18}\)+ \(C^5_{18}\)= bấm máy nhé
Đáp án là D
Nhóm thứ 1: chọn 7 nam từ 21 bạn nam, chọn 5 nữ từ 15 bạn nữ nên số cách chọn nhóm thứ nhất là: C 21 7 . C 15 5 cách.
Nhóm thứ 2: chọn 7 nam từ 14 bạn nam còn lại, chọn 5 nữ từ 10 bạn nữ còn lại nên số cách chọn nhóm thứ hai là: C 14 7 . C 10 5 cách.
Số cách chọn nhóm thứ ba là: C 7 7 . C 5 5 cách.
Vậy có C 21 7 . C 15 5 x ( C 14 7 . C 10 5 ) x ( C 7 7 . C 4 5 ) = C 21 7 C 15 5 C 14 7 C 10 5 cách chia nhóm.
Chọn 2 trong 5 giáo viên có: C 5 2 = 10 cách chọn.
Chọn 3 trong 6 học sinh có C 6 3 = 20 cách chọn.
Vậy có 10. 20 = 200 cách chọn.
Chọn đáp án A
Chọn C
Có 20 cách chọn bạn học sinh nam và 24 cách chọn bạn học nữ.
Vậy có 20×24= 480 cách chọn hai bạn (1 nam 1 nữ) tham gia đội cờ đỏ
a, Số cách chọn 6 viên bất kì là \(C_{23}^6=100947\) cách
Số cách chọn 6 viên chỉ màu vàng là \(C_8^6=28\) cách
Số cách chọn 6 viên chỉ màu xanh là \(C_{10}^6=210\) cách
\(\Rightarrow\) có \(100947-28-210=100709\) cách thỏa mãn.
b, Số cách chọn 6 viên có đủ 3 màu là \(5.8.10=400\)
Số cách chọn 6 viên bất kì là \(C_{23}^6=100947\)
\(\Rightarrow\) có \(100947-400=100547\) cách thỏa mãn.
1 cách
Chia 3 giảng viên cho 3 sinh viên mỗi người 1 giảng viên hướng dẫn 1 sinh viên.
Mk nghĩ v
không đúng rồi bạn có 9c cơ :(