K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

30 tháng 6 2017

a)Đk:\(x\ge\frac{1}{2}\)

\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)

Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)

\(t^4-4t^2+4t-1=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt

20 tháng 5 2017

Điều kiện:  \(x\ge-1\)

\(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}=0\)

\(\Leftrightarrow x^3+3x^2\sqrt{x+1}-4\sqrt{\left(x+1\right)^3}=0\)

Dễ thấy x = - 1 không phải là nghiệm của phương trình. Ta có

\(\frac{x^3}{\sqrt{\left(x+1\right)^3}}+\frac{3x^2}{\sqrt{\left(x+1\right)^2}}-4=0\)

Đặt \(\frac{x}{\sqrt{x+1}}=a\) thì ta được

\(a^3+3a-4=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\frac{x}{\sqrt{x+1}}=1\\\frac{x}{\sqrt{x+1}}=-2\end{cases}}\)

Tới đây thì đơn giản rồi nhé.

20 tháng 5 2017

\(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}=0\)

Đk:\(x\ge1\)

\(Pt\Leftrightarrow\left(x-\sqrt{x+1}\right)^3-3\sqrt{x+1}\left(x+1+x\sqrt{x+1}-2x^2\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x-1}\right)^3-3\sqrt{x+1}\left(\sqrt{x+1}+2x\right)\left(\sqrt{x+1}-x\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x+1}\right)\left(x^2+4x\sqrt{x+1}+4x+4\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x+1}\right)\left(x+2\sqrt{x+1}\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{x+1}=0\\\left(x+2\sqrt{x+1}\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{x+1}=0\\x+2\sqrt{x+1}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{x+1}\\x=-2\sqrt{x+1}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x^2=x+1\\x^2=4\left(x+1\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-x-1=0\\x^2-4x-4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=2-2\sqrt{2}\\x=\frac{1+\sqrt{5}}{2}\end{cases}}\) (thỏa mãn)

16 tháng 10 2016

sao đề nhìn bá vậy bạn ...

16 tháng 10 2016

bài này chắc đặt \(\sqrt{x^3-3x+6}\)cho nó gọn thôi