Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-2x+6\right)\left(x^2-8x+4\right)+\left(5x+1\right)\left(x+1\right)-\left(x^2-3x-3\right)\left(x^2+x-3\right)=0\)
\(\Leftrightarrow x^8-5x^2+7x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-3x+1\right)=0\)
Xong rồi nhé
\(\left(x^2-2x+6\right)\left(x^2-8x-4\right)+\left(5x+1\right)\)\(\left(x-1\right)-\left(x^2-3x-3\right)\left(x^2+x-3\right)=\)\(0\)
\(\Leftrightarrow x^8-5x^2+7x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-3x+1\right)=0\)
~ 양 셜 김 ~
đây Câu hỏi của Thanh Tâm - Toán lớp 9 - Học toán với OnlineMath
b) x2 +3x+1= (x+3)√(x2 +1)
\(\Leftrightarrow x\left(x+3\right)-\left(x+3\right)\sqrt{x^2+1}=-1\)
\(\Leftrightarrow\left(x+3\right)\left(x-\sqrt{x^2+1}\right)=-1\)
\(\Leftrightarrow\left(x+3\right)\frac{x^2-\left(x^2+1\right)}{x+\sqrt{x^2+1}}=-1\)(do \(x+\sqrt{x^2+1}\ne0\))
\(\Leftrightarrow\left(x+3\right)\frac{-1}{x+\sqrt{x^2+1}}=-1\)
\(\Leftrightarrow\frac{x+3}{x+\sqrt{x^2+1}}=1\)
\(\Leftrightarrow x+3=x+\sqrt{x^2+1}\)
\(\Leftrightarrow3=\sqrt{x^2+1}\)
\(\Leftrightarrow9=x^2+1\)
\(\Leftrightarrow8=x^2\)
\(\Leftrightarrow x=\pm2\sqrt{2}\).Vậy...
c)Giải phương trình sau:căn( 2059 -x ) + căn(2035 - x ) + căn( 2154 - x ) = 24- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!
<=> (x2 - 2x)2 + x2 - 2x + 1 - 13 = 0
<=> (x2 - 2x)2 + x2 - 2x - 12 = 0
Đặt t = x2 - 2x
Khi đó ta có pt: t2 + t - 12 = 0
<=> t2 + 4t - 3t - 12 = 0
<=> (t - 3)(t + 4) = 0 <=> \(\orbr{\begin{cases}t=3\\t=-4\end{cases}}\)
*Với t = 3 ta có: x2 - 2x = 3
<=> x2 - 2x - 3 = 0
<=> (x - 3)(x + 1) = 0 <=> \(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
*Với t = -4 ta có: x2 - 2x = -4
<=> x2 - 2x + 4 = 0
<=> (x - 1)2 + 3 = 0 (Vô nghiệm)
Vậy S = {3;-1}
(x2-2x)2 + (x-1)2 - 13 = 0
<=> x^4 - 4x^3 + 4x^2 + x^2 - 2x + 1 - 13 = 0
<=> x^3 - 4x^3 + 5x^2 - 2x - 12 = 0
<=> x^4 + x^3 - 5x^3 - 5x^2 + 10x^2 + 10x - 12x - 12 = 0
<=> x^3(x + 1) - 5x^2(x + 1) + 10x(x + 1) - 12(x + 1) = 0
<=> (x^3 - 5x^2 + 10x - 12)(x + 1) = 0
<=> (x^3 - 3x^2 - 2x^2 + 6x + 4x - 12)(x + 1) = 0
<=> [x^2(x - 3) - 2x(x - 3) + 4(x - 3)](x + 1) = 0
<=> (x^2 - 2x + 4)(x - 3)(x + 1) = 0
có x^2 - 2x + 4 = (x - 1)^2 + 3 lớn hơn 0
<=> x - 3 = 0 hoặc x + 1 = 0
<=> x = 3 hoặc x = -1
a) \(4x^2+x-5=0\) .......................... (1)
đặc \(x^2=t\left(t\ge0\right)\)
khi đó (1) \(\Leftrightarrow4t^2+t-5=0\)
ta có : \(a+b+c=4+1-5=0\) \(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(\left[{}\begin{matrix}t_1=1\left(nhận\right)\\t_2=\dfrac{c}{a}=\dfrac{-5}{4}\left(loại\right)\end{matrix}\right.\)
với : \(t=1\Rightarrow x^2=1\Leftrightarrow x=\pm1\)
vậy \(x=-1;x=1\)
a) \(3x^2+4x+1=0\) .......................... (2)
đặc \(x^2=t\left(t\ge0\right)\)
khi đó (2) \(\Leftrightarrow3t^2+4t+1=0\)
ta có : \(a-b+c=3-4+1=0\) \(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(\left[{}\begin{matrix}t_1=-1\left(loại\right)\\t_2=\dfrac{-c}{a}=\dfrac{-1}{3}\left(loại\right)\end{matrix}\right.\) \(\Rightarrow x\in\varnothing\)
vậy phương tình vô nghiệm
P = Sin2a - Sin4(90o - a) + 2Sin2(90o - a)
Mọi ng giải giúp mik bài này vs. Cảm ơn nhiều !
\(x^4+3x^2-4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x^2+4\right)=0\)
Vì x2+4>0
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Bài làm
x⁴ + 3x² - 4 = 0
<=> x⁴ - x² + 4x² - 4 = 0
<=> x²( x² - 1 ) + 4( x² - 1 ) = 0
<=> ( x² + 4 )( x² - 1 ) = 0
<=> x² + 4 = 0 hoặc x² - 1 = 0
<=> x² = -4 ( vô lí ) hoặc x² = 1
<=> x = 1 hoặc x = -1
Vậy x = 1 hoặc x = -1