Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cm (m+2n)2 <= 9p2 ( bunhiacopxki)
=>m+2n <= 3p
Có 1/m+2/n=1/m +1/n + 1/n >= (1+1+1)2/(m+2n) >= 9/3p >= 3/p
dấu "=" khi m=n=p
bài này ko khó, bn biến đổi VT áp dụng C-S dạng Engel vào là dc
a/ Áp dụng Bất đẳng thức Cauchy cho các số m2,n2,1 không âm ta được:
m2+1>=2m(1)
n2+1>=2n (2)
Từ (1) và (2)=> m2+n2+2>= 2m+2n vs mọi m,n (đpcm)
b/ Ta có: (a-b)2>= 0
<=> a2 +b2-2ab>=0
<=>a2+b2+2ab>=4ab (cộng 2 vế vs 2ab với a>0,b>0)
<=> (a+b)2>= 4ab
<=> a+b >= 4ab/(a+b) (chia 2 vế cho a+b với a>0.b>0)
<=> (a+b)/ab>= 4/(a+b) (3)
Mà: 1/a+1/b=(a+b)/ab (4)
Từ (3) và (4)=> 1/a+1/b>=4/(a+b)
<=> (a+b)(1/a+1/b)>=4 (đpcm)
b/
\(a^3+a^3+1\ge3\sqrt[3]{a^6}=3a^2\)
Tương tự: \(2b^3+1\ge3b^2\) ; \(2c^3+1\ge3c^2\)
Cộng vế với vế:
\(2\left(a^3+b^3+c^3\right)\ge3\left(a^2+b^2+c^2\right)-3\)
Mặt khác ta lại có:
\(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=3\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)\ge2\left(a^2+b^2+c^2\right)+\left(a^2+b^2+c^2\right)-3\ge2\left(a^2+b^2+c^2\right)+3-3\)
\(\Leftrightarrow a^3+b^3+c^3\ge a^2+b^2+c^2\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\frac{a^3}{\left(b+2\right)^2}+\frac{b+2}{27}+\frac{b+2}{27}\ge3\sqrt[3]{\frac{a^3\left(b+2\right)^2}{27^2.\left(b+2\right)^2}}=\frac{a}{3}\)
Tương tự: \(\frac{b^3}{\left(c+2\right)^2}+\frac{c+2}{27}+\frac{c+2}{27}\ge\frac{b}{3}\) ; \(\frac{c^3}{\left(a+2\right)^2}+\frac{a+2}{27}+\frac{a+2}{27}\ge\frac{c}{3}\)
Cộng vế với vế:
\(VT+\frac{2\left(a+b+c\right)+12}{27}\ge\frac{a+b+c}{3}\)
\(\Leftrightarrow VT+\frac{2}{3}\ge1\Leftrightarrow VT\ge\frac{1}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(A=x^2+4y^2+x^2+\frac{1}{x}+\frac{1}{x}+12y^2+\frac{3}{2y}+\frac{3}{2y}\)
\(A\ge\frac{\left(x+2y\right)^2}{2}+3\sqrt[3]{\frac{x^2}{x^2}}+3\sqrt[3]{\frac{12y^2.3.3}{2y.2y}}\ge14\)
\(\Rightarrow A_{min}=14\) khi \(\left\{{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\)
\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3-a^2b-ab^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0,\forall a,b\ge0\)
Áp dụng:
\(\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+1}=\frac{abc}{ab\left(a+b\right)+abc}=\frac{c}{a+b+c}\)
\(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(b+c\right)+1}=\frac{abc}{bc\left(b+c\right)+abc}=\frac{a}{a+b+c}\)
\(\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(c+a\right)+1}=\frac{abc}{ca\left(c+a\right)+abc}=\frac{b}{a+b+c}\)
\(\Rightarrow VT\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=\frac{a+b+c}{a+b+c}=1\left(đpcm\right)\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{1+xy}+\frac{1}{1+xz}+\frac{1}{1+yz}\geq \frac{9}{xy+yz+xz+3}\) (1)
Theo hệ quả quen thuộc của BĐT AM-GM thì:
\(x^2+y^2+z^2\geq xy+yz+xz\)
\(\Leftrightarrow xy+yz+xz\leq 1(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\geq \frac{9}{4}\)
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)