">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
7 tháng 11 2021

Bài 1: 

Kẻ \(OM\perp AB\)\(OM\)cắt \(CD\)tại \(N\).

Khi đó \(MN=8cm\).

TH1: \(AB,CD\)nằm cùng phía đối với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (1)

\(R^2=OA^2=OM^2+AM^2=\left(h+8\right)^2+\left(\frac{15}{2}\right)^2\)(2) 

Từ (1) và (2) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{9}{4}\).

TH2: \(AB,CD\)nằm khác phía với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (3)

\(R^2=OA^2=OM^2+AM^2=\left(8-h\right)^2+\left(\frac{15}{2}\right)^2\)(4)

Từ (3) và (4) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{-9}{4}\)(loại).

DD
7 tháng 11 2021

Bài 3: 

Lấy \(A'\)đối xứng với \(A\)qua \(Ox\), khi đó \(A'\)có tọa độ là \(\left(1,-2\right)\).

\(MA+MB=MA'+MB\ge A'B\)

Dấu \(=\)xảy ra khi \(M\)là giao điểm của \(A'B\)với trục \(Ox\).

Suy ra \(M\left(\frac{5}{3},0\right)\).

15 tháng 12 2016

ko đc đăng câu hỏi bằng hình ảnh

18 tháng 12 2016

Kệ Người ta nhiều chuyện

 

22 tháng 7 2021

-11/abc 

23 tháng 9 2021

đi ngủ đê ae 

(1)=x^3-y^3=7
<=>(x-y)(x^2+y^2+xy)=7
<=>(X-y)^3+3xy(x-y)=7
thay(2)vào
=>(x-y)^3+3.2=7
=>x-y=1
thay vào (2)=>=xy=2
=>y^2+y-2=0
___y=1 &-2
=>x=2&-1

(1)=x^3-y^3=7

<=>(x-y)(x^2+y^2+xy)=7

<=>(X-y)^3+3xy(x-y)=7

thay(2)vào

=>(x-y)^3+3.2=7

=>x-y=1

thay vào (2)=>=xy=2

=>y^2+y-2=0

y=1 &-2

=>x=2&-1

20 tháng 8 2021

Ta có : \(x^3+y^3=9< =>\left(x+y\right)\left(x^2-xy+y^2\right)=9\)

\(< =>x^2-xy+y^2=3\)

\(< =>\left(x+y\right)^2-3xy=3\)

\(< =>3xy=6< =>xy=2\)

giờ bạn chỉ cần giải hpt đơn giản này là đc nhé

20 tháng 8 2021

Ta có : pt 1 <=> xy(x+y) = 2

kết hợp với pt 2 ta được \(x^2y^2+xy+1=3xy\)

\(< =>\left(xy+2\right)^2-\sqrt{3}^2=0\)

\(< =>\left(xy+2-\sqrt{3}\right)\left(xy+2+\sqrt{3}\right)=0\)

\(< =>\orbr{\begin{cases}xy=2-\sqrt{3}\\xy=2+\sqrt{3}\end{cases}}\)

đến đây dễ r , sai chỗ nào bạn chỉ mình nhé