K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 2 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a^4+b^4)(a^2+b^2)\geq (a^3+b^3)^2\)

\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{(a^3+b^3)^2}{ab(a^3+b^3)(a^2+b^2)}=\frac{a^3+b^3}{ab(a^2+b^2)}(1)\)

Tiếp tục áp dụng BĐT Bunhiacopxky:

\((a^3+b^3)(a+b)\geq (a^2+b^2)^2\)

Mà theo hệ quả BĐT AM-GM: \(a^2+b^2\geq \frac{(a+b)^2}{2}\)

Suy ra \((a^3+b^3)(a+b)\geq (a^2+b^2)\frac{(a+b)^2}{2}\)

\(\Leftrightarrow a^3+b^3\geq \frac{(a+b)(a^2+b^2)}{2}(2)\)

Từ (1); (2) suy ra \(\frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{a^3+b^3}{ab(a^2+b^2)}\geq \frac{a+b}{2ab}\)

Tương tự với các phân thức còn lại và cộng theo vế thu được:

\(\sum \frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{a+b}{2ab}+\frac{b+c}{2bc}+\frac{a+c}{2ac}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\)

12 tháng 2 2018

E cảm ơn nhiều ạ. Mong thầy cô giúp đỡ e thêm. E yếu phần bđt ạ

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3}{d^3}\)

\(\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{\left(bk+b\right)^3}{\left(dk+d\right)^3}=\dfrac{b^3}{d^3}\)

Do đó: \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}\)

4 tháng 11 2018

a) Theo bđt cauchy ta có:

\(a^3+b^3+b^3\ge3\sqrt[3]{a^3.b^6}=3ab^2\)

\(a^3+a^3+b^3\ge3a^2b\)

công vế theo vế ta có \(3\left(a^3+b^3\right)\ge3ab^2+3a^2b\)

\(\Leftrightarrow a^3+b^3+3\left(a^3+b^3\right)\ge a^3+3a^2b+3ab^2+b^3\)

\(\Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)

suy ra đpcm

4 tháng 11 2018

ta luôn có \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2+a^2+b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow\dfrac{2\left(a^2+b^2\right)}{4}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow\dfrac{\left(a^2+b^2\right)}{2}\ge\dfrac{\left(a+b\right)^2}{2^2}=\left(\dfrac{a+b}{2}\right)^2\)

suy ra đpcm

26 tháng 2 2024

Xét: a>b

=>a-b>0

=>|a-b|=a-b

=>a-b<1

=>a<b+1

=>a/b<b+1/b

=>a/b<1+1/b

Vì:b>1

=>1/b<1

=>a/b<1+1

=>a/b<2

Mà: a>b

=>b/a<1

=>a/b+b/a<1+2

=>a/b+b/a<3

Ngược lại với b>a

Xét:a=b

=>a/b+b/a=2

=>a/b+b/a<3

Chắc giờ bạn làm đc rồi nhỉ

2 tháng 10 2017

bài 3 : \(\left\{{}\begin{matrix}ab=2\\bc=3\\ca=54\end{matrix}\right.\)

hiển nhiên a;b;c =0 không phải nghiệm

\(\Leftrightarrow\left(abc\right)^2=2.3.54=18^2\)

\(\Leftrightarrow\left[{}\begin{matrix}abc=-18\\abc=18\end{matrix}\right.\)

abc=-18 => c=-9; a=-6; b=-1/3

abc=18 => c=9; a=6; b=1/3

17 tháng 1 2019

Bài 1a):

Ta có:

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\left(a+b\right).\dfrac{a+b}{ab}=\dfrac{a^2+2ab+b^2}{ab}=\dfrac{a^2+b^2}{ab}+2\)

Lại có: (a - b)2 = a2 - 2ab + b2 \(\ge\) 0

\(\Rightarrow\) a2 + b2 \(\ge\) 2ab

\(\Rightarrow\) \(\dfrac{a^2+b^2}{ab}\ge2\)

\(\Rightarrow\) \(\dfrac{a^2+b^2}{ab}+2\ge4\)

Vậy \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)

17 tháng 1 2019

Bài 2a):

Ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\ge0\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

Vậy ta có đpcm

a: \(\Leftrightarrow-\dfrac{23}{5}\cdot\dfrac{50}{23}< x< \dfrac{-13}{5}:\dfrac{21}{15}=\dfrac{-13}{5}\cdot\dfrac{5}{7}=\dfrac{-13}{7}\)

=>-10<x<-13/7

hay \(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2\right\}\)

b: \(\Leftrightarrow-\dfrac{13}{3}\cdot\dfrac{1}{3}< x< \dfrac{-2}{3}\cdot\dfrac{4-3-9}{12}\)

\(\Leftrightarrow-\dfrac{13}{9}< x< \dfrac{4}{9}\)

mà x là số nguyên

nên \(x\in\left\{-1;0\right\}\)

18 tháng 2 2019

VL CTV MÀ CŨNG HỎI

CTV cũng được phép hỏi chứ bạn.